Medicine developed, delivered, and experienced in a completely new way.

EndearvorRx video skipped here to keep filesize manageable....

Likelihood Approximation Networks in PyMC

Alexander Fengler

Ricardo Viera

01.12.2023

000000

00000

As a starting point...

Let's unpack a <u>simplified version</u> of the <u>EndeavorRx®</u> game

We are driving around a circuit!

https://cociwg.org/blog/2014/5/17/exercising-the-mind-to-treat-attention-deficitsPictureAnguera, J. A., Boccanfuso, J., Rintoul, J. L., Al-Hashimi, O., Faraji, F., Janowich, J., ... & Gazzaley, A.Neuro(2013). Video game training enhances cognitive control in older adults. Nature, 501(7465), 97-101.resear

NeuroRacer main research paper

We are driving around a circuit!

Road-sign appears!

We are driving around a circuit!

Road-sign appears!

Target or no Target?

Road-sign appears!

We are driving around a circuit!

> Road-sign appears!

Target or no Target?

Target or no Target?

Leaves us with <u>four</u> <u>types of responses</u>!

types of responses!

PyMC

AModel

choice / reaction time distribution!

2 Important Aspects of the Model

1. Parameters interpretable

2. Special case of a whole class of related models

The model is abstract but designed to capture separable aspects of a cognitive process!

PVMC

Speed of processing / Evidence per second Don't press! Drift Go Go Go V V NoGo NoGo NoGo

Improvement over time

Speed accuracy trade-off

<u>More mistakes</u> but <u>shorter reaction times</u>

Less mistakes, but longer reaction times

More cautious

Very successful modeling paradigm

Widely applied with <u>1000s of</u> <u>publications</u> across many different experiment modalities!

But it is does <u>not</u> <u>capture all aspects of</u> <u>the task</u> which are of interest to us!

Our Model

Our Model

- 1. Parameters interpretable
 - 2. Special case of a whole class of related models

The model is abstract but designed to capture separable aspects of a cognitive process!

PyMC Labs

Non-decision Time

There is a <u>deadline</u> to the response here:

Players <u>might want to enforce a</u> <u>choice</u> by <u>compromising accuracy</u> <u>towards the end</u> of the acceptable reaction time window!

There is a <u>deadline</u> to the response here:

Players <u>might want to enforce a</u> <u>choice</u> by <u>compromising accuracy</u> <u>towards the end</u> of the acceptable reaction time window!

These models <u>might be better</u> <u>suited</u> to model some aspects of the game!

But there is a fundamental problem...

Derivation of closed-form likelihoods is a lot harder!

<u>Without likelihoods</u>, no <u>Bayes' Rule</u>...

Simulation is easy however!

Inference from access to simulators?

Field with a long history.

Many recent advances!

Approximate Bayesian Computation (ABC)! [These days: Simulation Based Inference (SBI)]

Marjoram, P., Molitor, J., Plagnol, V., & Tavaré, S. (2003). Markov chain Monte Carlo without likelihoods. *Proceedings of the National Academy of Sciences*, *100*(26), 15324-15328. — Traditional ABC Cranmer, K., Brehmer, J., & Louppe, G. (2020). The frontier of simulation-based inference. *Proceedings of the National Academy of Sciences*, *117*(48), 30055-30062. — Overview, modern approaches

Inference from access to simulators?

Field with a long

history.

Many recent advances!

Approximate Bayesian Computation (ABC)! [These days: Simulation Based Inference (SBI)]

We will use one <u>recent technique</u> based on <u>Neural Networks</u> (The PyMC workflow allows other techniques to be substituted in)

Marjoram, P., Molitor, J., Plagnol, V., & Tavaré, S. (2003). Markov chain Monte Carlo without likelihoods. *Proceedings of the National Academy of Sciences*, *100*(26), 15324-15328.
Cranmer, K., Brehmer, J., & Louppe, G. (2020). The frontier of simulation-based inference. *Proceedings of the National Academy of Sciences*, *117*(48), 30055-30062.
Fengler, A., Govindarajan, L. N., Chen, T., & Frank, M. J. (2021). Likelihood approximation networks ______ Our approach (LANs) for fast inference of simulation models in cognitive neuroscience. *Elife*, *10*, e65074.

Run simulations

PyMC

Train Neural Network to Represent Approximate Likelihood

Run simulations

Training

PyMC

We made this previously available through a separate toolbox: HDDM

Training https://direct.mit.edu/ji

https://direct.mit.edu/jocn/article-abstract/34/10/1780/112585/

In our joint work with Akili we ran into the limitations of this toolbox

It <u>relies on an outdated backend</u> which compromises forward compatibility and performance!

We made this previously available through a separate toolbox: HDDM

NKILI

Training

https://direct.mit.edu/jocn/article-abstract/34/10/1780/112585/

In our joint work with Akili we ran into the limitations of this toolbox

It <u>relies on an outdated backend</u> which compromises forward compatibility and performance!

Break roadblocks by relying on modern backend!

Properties inherited from Neural Networks

LAN

1. Differentiable with respect to inputs

 $\nabla_{\theta} logp_M^{Hist}(D_n; \theta_i)$

2. Speed via batching across datapoints

Properties inherited from Neural Networks

Properties inherited from Neural Networks

LAN

Hamiltonian Monte Carlo

PyMC

Let's look at all this through PyMC

Let's look at all this through PyMC

Code Pymc

1	<pre>with pm.Model() as m_ddm_gonogo:</pre>	
2	# Priors	
3	v = pm.Uniform("v", 0.000, 3.0)	
4	a = pm.Uniform("a", 0.3, 2.5)	— — Specify priors as per usual
5	z = at.constant(0.5)	
6	t = pm.Uniform("t", 0.0, 2.0)	
7		

```
neg_choice_sum_go = at.constant(np.sum(obs_ddm_go['choices'] == -1))
8
        neg_choice_sum_nogo = at.constant(np.sum(obs_ddm_nogo['choices'] == -1))
 9
10
        in_go = at.zeros((np.sum(obs_ddm_go["choices"] == 1), 6))
11
        in_nogo = at.zeros((np.sum(obs_ddm_nogo["choices"] == 1), 6))
12
13
14
        # subset to choice == 1
15
        # go trials
        in_go = at.set_subtensor(in_go[:, :-2], at.stack([v, a, z, t]))
16
        in go = at.set_subtensor(in go[:, -2], obs ddm go["rts"][obs ddm go["choices"] == 1])
17
18
        in_go = at.set_subtensor(in_go[:, -1], obs_ddm_go["choices"][obs_ddm_go["choices"] == 1])
19
        # nogo trials
20
        in_nogo = at.set_subtensor(in_nogo[:, :-2], at.stack([(-1) * v, a, z, t]))
21
        in_nogo = at.set_subtensor(in_nogo[:, -2], obs_ddm_nogo["rts"][obs_ddm_nogo["choices"] == 1])
22
23
        in_nogo = at.set_subtensor(in_nogo[:, -1], obs_ddm_nogo["choices"][obs_ddm_nogo["choices"] == 1])
24
        # combine go and nogo trials
25
26
        in_ = at.concatenate([in_go, in_nogo])
```

Some data prep... Let's skip this detail

Proof of concept: (Parameter Recovery)

Just a representative example here

Works well on current set of test cases!

Proof of concept: (Speed)

Effective sample size / second

Beating it with $\sim 10x$ speed improvement!

Our approach with <u>PyMC</u>, through <u>JAX</u>

https://www.pymc-labs.io/newsletter/