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EndearvorRx video skipped here to keep filesize manageable. ...
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As a starting point...

5 M

Let's unpack a simplified version of
the EndeavorRx® game




Neuroracer

https://cociwg.org/blog/2014/5/17 /exercising-the-mind-to-treat-attention-deficits

Anguera, J.A., Boccanfuso, J., Rintoul, J. L., Al-Hashimi, O., Faraji, F., Janowich, J., ... & Gazzaley, A.
(2013).Video game training enhances cognitive control in older adults. Nature, 501(7465), 97-101.

Picture

NeuroRacer main
research paper

We are driving
around a circuit!


https://cociwg.org/blog/2014/5/17/exercising-the-mind-to-treat-attention-deficits

Drive!

Neuroracer

We are driving
around a circuit!

Road-sign
appears!



Drive!

Neuroracer

larget or no Target?

We are driving
around a circuit!

Road-sign
appears!



Drive!

Neuroracer

larget or no Target?

Press!

We are driving
around a circuit!

Road-sign
appears!



Drive!

Neuroracer

/M

larget or no Target?

Don't press!

We are driving
around a circuit!

Road-sign
appears!



Neyroracer

Trials

Drive!

-l

larget or no Target?

Press!

Don't press!

Leaves us with four
types of responses!




Neyroracer

Trials

Drive!

-l

larget or no Target?

Press!

Don't press!

Good Bad
Symbol Symbol
Press CORRECT FALSE
Go Go
Don't FALSE CORRECT
Press NoGo NoGo

Leaves us with four
types of responses!



Neyroracer

Trials

Drive!

-l

larget or no Target?

Press!

Don't press!

Good Bad
Symbol Symbol
CORRECT FALSE observe
Press Go Go rt/choice
Don't FALSE CORRECT observe only
Press NoGo NoGo ‘choice’

Leaves us with four
types of responses!



Neyroracer

Trials

Drive!
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larget or no Target?

Press!

Don't press!

Go

NoGo



Neyroracer

Trials

Drive!

-l

larget or no Target?

Don't press!
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Our Mode!
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Our Model

Our Data

N\,
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Non-decision Time



Starting point

! ) Important Aspects of the Model
| v

v Special case of a whole class of related models
NOGO E'I-LJH'—'_/—;—__
I

ndt L The model is abstract but designed
‘ Boundary Criterion to capture separable aspects of a
cognitive process!
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Non-decision Time




Speed of processing / Evidence per second

Don't press!

6o ire Go
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Improvement over time N
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Speed accuracy trade-oft

Less mistakes, but
longer reaction times

More mistakes but
shorter reaction times

Criterion

Go

NoGo.

More cautious




Very successful modeling paradigm

Widely applied with 1000s of
publications across many different
experiment modalities!

Starting point

Drift
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But it is does not
capture all aspects of

the task which are of
interest to us!



Our Mode

Starting point

‘ Boundary Criterion
Non-decision Time

Our Mode

Parameters interpretable

@f a whole class of related models

The model is abstract but designed
to capture separable aspects of a

cognitive process!
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Our model implies a
constant evidence —
threshold over time. ..

There is a deadline to the
response here:

Players might want to enforce a
choice by compromising accuracy
towards the end of the acceptable

reaction time window!




Our model implies a
constant evidence —
threshold over time. ..

There is a deadline to the
response here:

Players might want to enforce a
choice by compromising accuracy
towards the end of the acceptable

reaction time window!

These models might be better
suited to model some aspects of
the game!




We want to do inference with these model variants!

But there is a fundamental problem...
Derivation of closed-form likelihoods is a lot harder!

Without likelihoods, no Bayes' Rule...

Simulation is easy however!




We want to do inference with these model variants!

Inference from access to simulators?
Field with a long

history. : : :
y Approximate Bayesian Computation (ABC)!
Many recent [These days: Simulation Based Inference (SBI)]
advances!
Marjoram, P., Molitor, J., Plagnol, V., & Tavarée, S. (2003). Markov chain Monte Carlo without Traditional ABC

likelihoods. Proceedings of the National Academy of Sciences, 100(26), 15324-15328.

Cranmer, K., Brehmer, J., & Louppe, G. (2020). The frontier of simulation-based

inference. Proceedings of the National Academy of Sciences, 117(48), 30055-30062. Overview, modern approaches



We want to do inference with these model variants!

Inference from access to simulators?
Field with a long

history. . . .
oo Approximate Bayesian Computation (ABC)!
Many recent [These days: Simulation Based Inference (SBI)]
advances!
We will use one recent technique based on Neural Networks
(The PyMC workflow allows other techniques to be substituted in)
Marjoram, P., Molitor, J., Plagnol, V., & Tavarée, S. (2003). Markov chain Monte Carlo without Traditional ABC

likelihoods. Proceedings of the National Academy of Sciences, 100(26), 15324-15328.

Cranmer, K., Brehmer, J., & Louppe, G. (2020). The frontier of simulation-based
inference. Proceedings of the National Academy of Sciences, 117(48), 30055-30062.

Fengler, A., Govindarajan, L. N., Chen, T., & Frank, M. J. (2021). Likelihood approximation networks
(LANSs) for fast inference of simulation models in cognitive neuroscience. Elife, 10, e65074.

—— Qverview, modern approaches

—— Qurapproach
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We want to do inference with these model variants! @ =

Run simulations

Costly Once

A\ PyMC
https://elifesciences.org/articles/65074 Jbabs
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We want to do inference with these model variants! & o v

LAN
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®
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Train Neural Network
to Represent Approximate
Likelihood

"\ PyMC
https://elifesciences.org/articles/65074 Jbabs
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Run simulations

Costly Once

We want to do inference with these model variants!

LAN

00101010107070)0>0,
HO00000

Sieisieis]ejo]e}0/e

Train Neural Network
to Represent Approximate
Likelihood

https://elifesciences.org/articles/65074
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(Re)Use for Inference

Cheap

(%)

PyMC
Labs


https://elifesciences.org/articles/65074
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Training

where © := (61,04, ..., 6,) e
Training 0 — i=— " Dnha
./‘\/19 I
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Sample
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space pYM C
https://elifesciences.org/articles/65074 JLabs
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Training

Iraining

where © := (61,60,, ....0,

S ROBERT J. & NANCY D. CARNEY

(MM ] INSTITUTE FOR BRAIN SCIENCE
@l BROWN UNIVERSITY

. Label
logpu"** (Dy; 6;)
o) —— Construct ond evaluate
Histogram!
91' LMQ - {Dn}IIY—l

Sample
Darameters
from some

Space

T
Simulate .
W PyMC

https://elifesciences.org/articles/65074
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We made this previously available
through a separate toolbox: HDDM

Training

Iraining

O logpit (Dp; 6;) <

Label

ROBERT J. & NANCY D. CARNEY
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https://elifesciences.org/articles/65074
https://direct.mit.edu/jocn/article-abstract/34/10/1780/112585/

We made this previously available
through a separate toolbox: HDDM

Tra I n I ng https://direct.mit.edu/jocn/article-abstract/34/10/1780/112585/

i

ANILI

v

In our joint work with Akili we ran into
the limitations of this toolbox

d%% % fe

It relies on an outdated backend
which compromises forward
compatibility and performance!
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We made this previously available
through a separate toolbox: HDDM

Tra I n I ng https://direct.mit.edu/jocn/article-abstract/34/10/1780/112585/
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ANILI
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In our joint work with Akili we ran into
the limitations of this toolbox

52 B

It relies on an outdated backend
which compromises forward
compatibility and performance!

|-

Break roadblocks by relying on £ m-
modern backend! > PYMC - - - @ E\aﬂ\t/’lg
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Properties inherited from Neural Networks

LAN

1. Differentiable with respect to inputs

Vologpif®* (Dy; 6;) O logpif** (Dn; 6;)

T o
.0
SOOOO00

Rt
S eisnisess

2. Speed via batching across datapoints

PyMC
https://elifesciences.org/articles/65074 K\D;* Lé bs
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Properties inherited from Neural Networks
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Properties inherited from Neural Networks

LAN
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Hamiltonian Monte Carlo

A\ PyMC
https://elifesciences.org/articles/65074 Jbabs
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Let's look at all this through PyMC A

Non-decision Time

Don't press! Press!
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Let's look at all this through PyMC / |a
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Let's look at all this through PyMC / |a

choice down
ndt i

Non-decision Time

observed_rts

~

Potential

unobserved_nogo

~

Potential

unobserved_go

~

Potential

Don't press!

U
-
D
w
w

OOQOOOQQOO
S0/0/0/00,0
O

@)
O
R
O
O Oy
O Qi
o .
@/
O
O

0:01010101010)0:0: 0
0/0/0/0/0]0,0)
O
00
QOO000O00OO00



Let's look at all this through PyMC
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choice probability

Starting point
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’ . :m choice up
Let's look at all this through PyMC /]
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ANILI

1 with pm.Model() as m_ddm_gonogo:
# Priors

v = pm.Uniform("v", 0.000, 3.0)
a = pm.Uniform("a", 0.3, 2.5) Specify priors as per usual
z = at.constant(0.5)
t = pm.Uniform("t", 0.0, 2.0)
neg_choice_sum_go = at.constant(np.sum(obs_ddm_go['choices'] == -1))
neg_choice_sum_nogo = at.constant(np.sum(obs_ddm_nogo['choices'] == -1))
in_go = at.zeros((np.sum(obs_ddm_go["choices"] == 1), 6))
in_nogo = at.zeros((np.sum(obs_ddm_nogo[*"choices"] == 1), 6))

# subset to choice ==

# go trials

in_go = at.set_subtensor(in_go[:, :-2], at.stack([v, a, z, t])) Some data prep ..
in_go = at.set_subtensor(in_gol[:, -2], obs_ddm_go["rts"][obs_ddm_go["choices"] == 11)

in_go = at.set_subtensor(in_gol[:, -11, obs_ddm_go["choices"] [obs_ddm_go["choices"] == 1]) Let's Sklp ’[hls de‘tall

# nogo trials

in_nogo = at.set_subtensor(in_nogol[:, :-2], at.stack([(-1) x v, a, z, t]))

in_nogo = at.set_subtensor(in_nogol[:, -2], obs_ddm_nogo["rts"] [obs_ddm_nogo["choices"] == 1])
in_nogo = at.set_subtensor(in_nogo[:, -11, obs_ddm_nogo["choices"] [obs_ddm_nogo["choices"] == 1])

# combine go and nogo trials g
in_ = at.concatenate([in_go, in_nogol) W py M '
+
Labs
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# LAN

hide = at.tanh(at.dot(in_, weights[@]) + biases[0])
hidl = at.tanh(at.dot(hid@, weights[1]) + biases[1])
hid2 = at.tanh(at.dot(hid1, weights[2]) + biases[2])

out = at.dot(hid2, weights[3]) + biases[3]
pm.Potential("observed_rts", out)

# CPN

in_cpn = at.stack([at.stack([v, a, z, t]), at.stack([(-1) x v, a, z, t])])
hido_cpn = at.tanh(at.dot(in_cpn, weights_cpn[@]) + biases_cpn([0])

hidl_cpn = at.tanh(at.dot(hid@_cpn, weights_cpn[1]) + biases_cpn[1])
hid2_cpn = at.tanh(at.dot(hid1_cpn, weights_cpn[2]) + biases_cpn[2])

preout_cpn = at.dot(hid2_cpn, weights_cpn[3]) + biases_cpn[3]
out_cpn = (-1) * at.log(( 1 + at.exp(preout_cpn))) # this takes log(1-p) (lower bound)

# go trials

ANILI

[enua)od
o3ou paAIasqoun

pm.Potential('unobserved_go', out_cpn[@, @] % neg_choice_sum_go)

# nogo trials

v

[enu9jod
03 paAIasqoun

pm.Potential('unobserved_nogo', out_cpn(1, @] * neg_choice_sum_nogo)

[enuslod
S1ITPIAISSqO

/IXLIS v
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Proof of concept: (Parameter Recovery)

94% HDI

0.3 0.4 0.5 0.6 1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.55 0.4 0.5 0.6 0.7

4JPYMC @ ArviZ

Just a representative example here
Works well on current set of test cases! @ PyMC
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Proof of concept: (Speed)

Effective sample size / second

> 1 [ } ] 1 hddm_1000
a- jax_1000
C—J nuts_1000
o3 * L] slice_1000
]
J 1

Software stack of a previous project Our approach with PyMC, through JAX ~ »
Beating it with ~10x speed improvement! A @

PyMC
Labs
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