
Likelihood Approximations for Bayesian Analysis of Sequential Sampling Models

by
Alexander Fengler

MSc. Cognitive Psychology and Neuroscience, Maastricht University, 2014

A dissertation submitted in partial fulfillment of the
requirements for the Degree of Doctor of Philosophy

in the Department of Cognitive, Linguistic & Psychological Sciences at Brown University

Providence, Rhode Island
February 2023



© Copyright 2023 by Alexander Fengler



This dissertation by Alexander Fengler is accepted in its present form by
the Department of Cognitive, Linguistic & Psychological Sciences as satisfying the

dissertation requirement for the degree of Doctor of Philosophy.

Date
Michael J. Frank, Director

Recommended to the Graduate Council

Date
Thomas Serre, Reader

Date
Jason Ritt, Reader

Approved by the Graduate Council

Date
Thomas A. Lewis

Dean of the Graduate School

iii



Vita

iv



MSc. Alexander Fengler Updated December 28, 2022

Email: alexander fengler@brown.edu GitHub: /AlexanderFengler Citizenship: German
Web: alexanderfengler.github.io LinkedIn: /alexander-fengler-89560b74

Education University Maastricht Maastricht, Netherlands
BSc. International Business Sept. 2009 – Jul. 2012
Specialization: Finance
�esis: Market Risk of De�ned Contribution Systems in the Netherlands
Exchange Semester: National University Singapore

University Maastricht Maastricht, Netherlands
MSc. Cognitive Psychology and Neuroscience Sept. 2012 – Jul. 2014
Specialization: Neuroeconomics
�esis: An application of the Dri� Di�usionModel to Medium Size Choice Sets
Mentors: Prof. Arno Riedl, Prof. Alexander Vostroknutov, Prof. Antonio
Rangel (California Institute of Technology)
Research Internship: California Institute of Technology Sept. 2013 - Jul. 2014
Representative Coursework:

Mathematical Methods for Economics
Microeconomic �eory
Neuroanatomy

Brown University Providence, United States
Enrolled in PhD. Program in Cognitive Science Aug. 2015 – Jul. 2016 Year
Mentor: Prof. Joseph Austerweil (le� department during �rst year)

Bocconi University Milan, Italy
MPhil. Statistics Sept. 2016 – Aug. 2017
Representative Coursework:

Real Analysis
Advanced Probability
Advanced Data Analysis

Brown University Providence,
PhD. in Cognitive Science Jan. 2018 – Dec. 2022
�esis Topic: Likelihood Approximations for Bayesian Analysis of Sequential
Sampling Models
Mentors: Prof. Michael J. Frank, Prof. �omas Serre, Prof. Jason Ri�
Representative Coursework:

Computational Statistics
Information �eory

v



Bayesian Computation

Research and Civil Service: Sep. 2008 – Apr. 2009
work experience University Cologne, Biochemical Faculty

Responsibilities: Laboratory work (DNA extraction) and full responsibility
over the �sh-stock held for experimental purposes

Teaching Assistantship: Sept. 2010 – May 2011
University Maastricht, SBE Business School

Classes: �antitative Methods I and II
Responsibility: Lead weekly sections for 10-15 students in a �ipped classroom
environment.

Research Assistantship: Sep. 2014 - May 2015
California Institute of Technology,
Rangel Neuroeconomics Laboratory

Continuation of MSc. �esis project and leading experimental design and data
collection process for a project in collaboration with a big so�ware company.

Teaching Assistantships: Sep. 2018 - Sep. 2021
Brown University,
Department of Cognitive, Psychological and Linguistic Sciences

Classes: �antitative Methods for Psychologists, Introduction to Psychology
Responsibility: Lead student sections, weekly open o�ce hours and contribute
to course organization.

Data Science Consulting: Sept. 2021 - now
PyMC Labs

Statistical Consulting with focus on Bayesian approaches. Lead two projects as
principal Data Scientist for a client seeking data analysis and code infrastruc-
ture solutions concerning Bayesian inference for cognitive process models.

Honors and Tuition Refund for top 3% GPA (University Maastricht) 2011
scholarships Cum Laude BSc., less than 5% of students (University Maastricht) 2012

Selected for research based Bachelor �esis (University Maastricht) 2012
PhD. Scholarship (Brown University) 2015
Tuition Waiver for MPhil. (University Bocconi) 2016

Publications Beyond Dri� Di�usion Models: Fitting a Broad Class of Decision and
Reinforcement Learning Models with HDDM
Alexander Fengler, Krishn Bera, Mads L. Pedersen, Michael J. Frank.
Journal of Cognitive Neuroscience, 2022.

vi



Likelihood approximation networks (LANs) for fast inference of sim-
ulation models in cognitive neuroscience
Alexander Fengler, Lakshmi Govindarajan, Tony Chen, Michael J. Frank.
eLife, 2021.

Encoder-Decoder Neural Architectures for Fast Amortized Inference of
CognitiveProcess Models
Alexander Fengler, Lakshmi Govindarajan, Michael J. Frank.
Proceedings of the annual meeting of the Cognitive Science Society, 2020.

Conference Posters An application of the Dri� Di�usion Model 2014
to Medium Size Choice Sets
Alexander Fengler, Antonio Rangel
Society For Neuroeconomics Conference, Miami, United States

Neural Networks for Likelihood Estimation in Approximate Bayesian
Computation: 2019
Application to Cognitive Process Models
Alexander Fengler, Michael J. Frank
RLDM, Montreal, Canada

Encoder-Decoder Neural Architectures for 2020
Fast Amortized Inference of CognitiveProcess Models
Alexander Fengler, Lakshmi Govindarajan, Michael J. Frank
Annual meeting of the Cognitive Science Society, Madison, United States

Likelihood Approximation Networks (LANs) for fast, 2022
tractable inference in cognitive process models
Krishn Bera, Alexander Fengler, Michael J. Frank
RLDM, Providence, United States

Talks and Tutorials Introduction to Approximate Bayesian Methods 2019
Guest Lecture in Computational Modeling Workshop, Brown University, In-
structor: Andra Gana

Approximate Bayesian Computation with Neural Networks 2020
Guest Lecture in Carney Computational Modeling Workshop, Brown Univer-
sity, Instructor: Andra Gana

LikelihoodApproximationNetworks andApproximate BayesianCom-
putation 2021
Guest Lecture at the Toronto Decision Neuroscience Lab, Toronto University,
Principal Investigator: Prof. Cendri Hutcherson

vii



Tutorial on HDDM-LAN extension 2022
Guest Lecture in Carney Computational Modeling Workshop, Brown Univer-
sity, Instructor: Andra Gana

Basic Introduction to HDDM 2022
Workshop, Royal Holloway University, UK

Introduction to Recurrent Neural Networks 2022
Carney Brainstorm EEG Challenge: Workshop & Hackathon, Brown Univer-
sity

Hierarchical Bayesian Inference with SSMs 2022
Tutorial, Mental E�ort Workshop, Brown University

viii



Preface

ix



Acknowledgements

Reflecting upon a journey of any significant duration, leads to a clash of prospective and retrospective.
A clash that is not only between two states of information, but also between two people. My ideas
about how my PhD would unfold were characterized by the expectation of a level of linearity, which
the irregularities of my final path through the program make a mockery of. The winding road was
ordained by a combination of random events and autonomous interventions, decisions that I made as
a result of the growth induced by my experiences in the program itself. These experiences in turn
were shaped by the people I intersected with and I would like to extend my gratitude to a few of
these individuals in the following few lines. First, I am grateful for the initial chance to attempt
the PhD in Cognitive Science at Brown University, granted by my first advisor Joseph Austerweil.
Joe unfortunately left Brown after my first year, but he set the tone for a supportive environment
fueling excitement for intellectual exploration and putting his students needs before his own. After
Joe left I was extremely fortunate to find a second habitat, equally conducive to free spirited inquiry
and supportive of students, under the supervisor of this thesis, Michael J. Frank. I can not thank
Michael enough for having allowed me to find shelter in his lab after a difficult (unexpectedly
nonlinear) moment in my life. Michael guides his students with an invisible hand, that provides
the simultaneous feelings of free inquiry and trust that the ship will sail home. A kind of unique
magic that leaves one puzzled. But the PhD is finally not defined only by the student/supervisor
relationship, it is also shaped by the friends, life partners and unexpected auxiliary advisors we find
along the way. I am especially grateful to my friends Babak Hemmatian, Lakshmi Govindarajan,
Ivan Felipe Rodriguez, Rannie Xu, Cris Buc Calderon, Ivan Grahek, Tyler Barnes Diana, Sofia
Verba and Jatan Buch. I learned a lot from all of you, but most importantly you made my time in
Providence eventful and enjoyable. Moreover I thank Nicholas Garcia Trillos, a mentor and friend,
whose support at the initial stages of grad school gave me the confidence to continue my pursuits in
applied mathematics, a passion that I cultivated since the beginning of the program. I also want
to thank my wife Tiantian Li for molding the final three years of the PhD into an even greater
adventure and I am looking forward to playing this role in her own future educational exploits. I
will never forget your unwavering affection in moments when grad school stresses in combination
with Covid-19 had temporarily expanded my physical shape into proportions that you could not
have predicted. Lastly, I thank my family for their steady support on this journey which we all had
foreseen to be a little shorter.

x



Contents

List of Tables xiv

List of Figures xv

1 General Introduction 3
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 An overview of deep learning based approximate Bayesian inference 14
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 LFI: Motivating example from Computational Cognitive Science . . . . . . . . . . . 19
2.3 Approximate Inference at large . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.1 Broad Classes of Likelihood Free Inference Algorithms . . . . . . . . . . . . . 24
2.3.2 Computational Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 LFI-ABC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4.1 The ABC rejection sampler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.2 Choice of sampler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4.3 Dimensionality Reduction: Summary Statistics . . . . . . . . . . . . . . . . . 33

2.5 LFI-NN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.5.1 Basic Building Block: Density Estimators . . . . . . . . . . . . . . . . . . . . 35
2.5.2 Basic Building Block: Ratio Estimators . . . . . . . . . . . . . . . . . . . . . 40
2.5.3 Basic Building Block: Networks Relevant for Summary Statistics . . . . . . . 42
2.5.4 Algorithms that target the Posterior . . . . . . . . . . . . . . . . . . . . . . . 44
2.5.5 Algorithms that target the Likelihood . . . . . . . . . . . . . . . . . . . . . . 51

2.6 Exploiting LFI-NN in Cognitive Neuroscience . . . . . . . . . . . . . . . . . . . . . . 53
2.7 The software Landscape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.8 Conclusion and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3 Likelihood approximation networks (LANs) for fast inference of simulation models
in cognitive neuroscience 74
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

xi



3.2 Approximate Bayesian Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.3 Learning the Likelihood with simple Neural Network Architectures . . . . . . . . . . 80

3.3.1 Pointwise approach: Learn likelihoods of individual observations with MLPs . 83
3.3.2 Histogram approach: Learn likelihoods of entire dataset distributions with CNNs 84
3.3.3 Training Specifics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.4 Test Beds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.5.1 Networks learn likelihood function manifolds . . . . . . . . . . . . . . . . . . 87
3.5.2 Parameter Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.5.3 Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.5.4 Hierarchical inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.7 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
3.8 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.8.1 Test-Beds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.8.2 MLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
3.8.3 CNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
3.8.4 Strengths and Weaknesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.9 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
3.9.1 Parameter Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
3.9.2 Manifolds / Likelihoods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4 Beyond Drift Diffusion Models: Fitting a Broad Class of Decision and Reinforce-
ment Learning Models with HDDM 123
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.2 HDDM: The basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
4.3 Approximate Likelihoods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
4.4 HDDM Extension: Step by Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
4.5 Concluding Thoughts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
4.6 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5 Marrying Likelihood Approximations with Modern Inference Algorithms 157
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5.2.1 Sequential Sampling Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
5.2.2 LANs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
5.2.3 Variational Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
5.2.4 Hamiltonian Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

xii



5.2.5 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
5.2.6 Details of Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . 170

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
5.3.1 Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
5.3.2 Parameter Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
5.3.3 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
5.3.4 ANGLE Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
5.5 Limitations and Directions for Future Research . . . . . . . . . . . . . . . . . . . . . 197
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

6 General Discussion 207
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

xiii



List of Tables

3.1 Parameter Recovery for a variety of test-bed models . . . . . . . . . . . . . . . . . . 113

xiv



List of Figures

2.1 Graphical summary of the general connections between computational models discussed
in this section. In general our subjects perform one of many tasks (three examples
given, with random dot motion, brightness discrimination and dot separation). Our
cognitive process model, is the computational generative model under investigation: I
assume subject data derives abstractly from the computational process instantiated
in this model. The resulting (observed) behavioral data (right) may impact the next
stimulus and / or the parameter configuration of the model (e.g. via a process that
facilitates learning from feedback). The parameters of the model may also be affected
by any type of covariate (upper right) such as fMRI BOLD / EEG signals or e.g. pupil
dilation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 This figure, as adapted from (Huys, Maia, and Frank, 2016), conceptualizes the dis-
tinction between machine learning based dimensionality reduction of high dimensional
behavioral (and other) datasets and an approach that utilizes computational cognitive
models for the same purpose. The discipline of computational psychiatry (while not a
priori dismissive of data-driven analysis) intends to utilize the later techniques for the
purpose of basing diagnostic criteria for mental health on the mechanistic distinction
in behavior as seen through the eyes of such computational cognitive models. This
contrasts with current practices which form the criteria for classification of mental
health problems (First, 2013). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 The Figure illustrates the high level problem presented when working with stochastic
process models without access to a likelihood function. The forward problem, simulating
data from the model, is usually easy. The inverse problem, parameter inference given
data, is usually the difficult part. If a-priori one has access only to a simulator,
performing Bayesian inference needs to follow one of three routes. Either one derives a
likelihood function for the given model M. Even for seemingly mundane models such
as the drift diffusion model, such a derivation takes enormous mathematical expertise.
Next, one can rely on traditional Likelihood Free Inference (LFI), which often ends up
computationally prohibitively expensive. Lastly, one can make use of the arsenal of
deep learning based approaches the comparative benefits of which form a major part of
the content of this review. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

xv



2.4 Graphical illustration of the basic DDM. Boundary crossings of the red particles
(illustrated via the red stars)are treated as choice / reaction time pairs. The black
histograms provide example distributions for both choices (up and down). The model’s
four basic parameters are the starting point (z), which determines some a priori bias in
the decision process, a non-decision time (ndt) which captures an initial delay in the
decision process, the drift (v) which determines a constant underlying rate of evidence
over time and the boundary separation or criterion (a) which determines the amount
of evidence necessary for a decision. . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Systematically varying aspects of the SSMs gives us a range of relevant model for-
mulations. The resulting models can be divided into four classes according to the
difficulty they present with likelihood evaluations. I consider the simple DDM in the
analytical likelihood (solid line) category, although strictly speaking, as discussed in
the main text, the likelihood still demands an approximation algorithm. This algo-
rithm is however sufficiently fast to not consider it a major computational bottleneck.
The Full-DDM model demands numerical quadrature (dashed line) for likelihood
evaluation, which integrates over variability parameters. This can easily inflated the
cost of likelihood evaluation by two orders of magnitude. For some models, likelihood
approximations have been derived via the Fokker-Planck equations (dotted-dashed
lined) which similarly incurs non-trivial evalutation cost. Last, for some models
no approximations based on analytical methods exist and one needs to resort to
computationally expensive simulations to get likelihood estimates (dotted line). . . 23

2.6 Graphical displays illustrating the differences in trajectories between the DDM and
Levy Flighy models. The only difference between the illustrated models is the noise
process. On the left, the DDM model is driven by Gaussian noise, whereas on the
right the Levy Flight model is driven by an alpha-stable distribution (in this case with
parameter α = 1, which implies a Cauchy distributed noise process). The difference in
the observed trajectories shown in blue is stark. The Cauchy noise process leads to
much larger instantaneous shifts in the particle location. Simulating either process
is equally trivial using the Euler-Maruyama method, however Bayesian inference is
rendered much harder for the Levy Flight model, because of the missing likelihood
function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.7 Overview of methods under discussion in this review. The discussion will focus mostly
on likelihood free methods (left side of the tree), however approximate inference in
general includes powerful optimization based methods to perform posterior inference
in models where posteriors are complex but access to likelihood functions is granted
(right side of the tree). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

xvi



2.8 Overview of computation strategies and their connection to the three broad categories
of approximate LFI methods under discussion in this chapter. The main focus in
this chapter are LFI-ABC methods to contextualize the history of ideas, and LFI-NN
methods representing the modern approaches to LFI. . . . . . . . . . . . . . . . . . . 28

2.9 Graphical illustration of a Mixture Density Network (MDN). Taken from Vossen,
Feron, and Monti, 2018 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.10 This figure illustrates the basic idea behind invertible flow transformations. Adapted
from Dinh, Sohl-Dickstein, and S. Bengio, 2016 and Papamakarios, Nalisnick, et al.,
2019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.11 This figure illustrates how the ratio estimators may be utilized in an MCMC algorithm
for a downstream task. The corresponding network is set up to use two ratio estimators,
so that the output is a likelihood ratio between ℓ(θt|x) and ℓ(θ′ |x). This likelihood
ratio is all that needs to be evaluated in the context of MCMC algorithms. Taken
from Hermans, Begy, and Louppe, 2020. . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.12 The figure provides the schemata on how to construction invariant functions via
iterations (stacking) of equivariant modules, topped by an invariant module. Circles
denote random variables. Blue squares, denote arbitrary functions (possibly with
outsourced noise terms η). Red squares denote arbitrary embedding functions. The ⊕
denotes symmetric pooling operations. Figure taken from Bloem-Reddy and Teh, 2020. 45

2.13 Schemata for the BayesFlow algorithm. During the training phase, one jointly trains
a summary statistics network and a invertible conditional flow (ICF) from simulation
data. At inference, one passes the observed dataset (here x0) through the learned
summary statistic network and samples from the inverted ICF, which is conditioned
on the respective summary statistic (x̃0). Figure taken from S. T. Radev, Mertens,
et al., 2020 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.14 This figure summarizes aspects of the discussion in section 3.6. It shows the links
between the building blocks (left) discussed in sections 2.5.1, 2.5.2, and 2.5.3, and the
LFI-NN algorithms discussed in sections 2.5.4 and 2.5.4 (middle). The algorithms are
linked with the computational strategies discussed in 2.3, and aspects of deployment
flexibility (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.15 Figure illustrates the software landscape as described in section 2.7. I emphasize that
this is not an exhaustive enumeration of all related software in existence. . . . . . . . 59

xvii



3.1 A The space of theoretically interesting models in the cognitive neurosciences (red) is
much larger than the space of mechanistic models with analytic likelihood functions
(green). Traditional ABC methods require models that have low dimensional sufficient
statistics (blue). B Illustrates how LANs can be used in lieu of online simulations for
efficient posterior sampling. The left panel shows the predominant PDA method used
for ABC in the cognitive sciences (Turner, Van Maanen, and Forstmann, 2015). For
each step along a Markov chain, 10K-100K simulations are required to obtain a single
likelihood estimate. The right panel shows how we can avoid the simulation steps
during inference using amortized likelihood networks that have been pretrained using
empirical likelihood functions (operationally in this paper: Kernel density estimates
and discretized histograms). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.2 High level overview of our approaches. For a given model M, we sample model
parameters θ from a region of interest (upper left), and run 100k simulations (mid
left). We use those simulations to construct a KDE-based empirical likelihood, and
a discretized (histogram-like) empirical likelihood. The combination of parameters
and the respective likelihoods is then used to train the likelihood networks (middle).
Once trained we can use the MLP and CNN for posterior inference given an empirical
/ experimental dataset (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.3 Pictorial representation of the stochastic simulators that form our test-bed. Our point
of departure is the standard simple drift diffusion model (DDM) due its analytical
tractability and its prevalence as the most common SSM in cognitive neuroscience.
By systematically varying different facets of the DDM, we test our LANs across a
range of SSMs for parameter recovery, goodness of fit (posterior predictive checks) and
inference runtime. We divide the resulting models into four classes as indicated by the
legend. We consider the simple DDM in the analytical likelihood (solid line) category
although, strictly speaking, the likelihood involves an infinite sum and thus demands
an approximation algorithm introduced by Navarro & Fuss, but this algorithm is
sufficiently fast to evaluate so that it is not a computational bottleneck. The Full-
DDM model needs numerical quadrature (dashed line) to integrate over variability
parameters, which inflates the evaluation time by one to two orders of magnitude
compared to the simple DDM. Similarly, likelihood approximations have been derived
for a range of models using the Fokker-Planck equations (dotted-dashed line), which
again incurs non-negligible evaluation cost. Finally, for some models no approximations
exist and we need to resort to computationally expensive simulations for likelihood
estimates (dotted line). Amortizing computations with LANs can substantially
speed up inference for all but the analytical likelihood category (but see run-time for
how it can even provide speed up in that case for large datasets). . . . . . . . . . . . 87
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3.4 A Shows the training and validation loss for the MLP for the DDM model across
epochs. Training was driven by the Huber loss. The MLP learned the mapping
{θ, rt, c} 7→ logℓ(θ|rt, c), i.e., the log likelihood of a single choice/RT data point given
the parameters. Training error declines rapidly, and validation loss trailed training loss
without further detriment (no overfitting). Please see Figure 3.2 and section 3.8 for
more details about training procedures. B Illustrates the marginal likelihood manifolds
for choices and RTs, by varying one parameter in the trained region. Reaction times
are mirrored for choice options −1, and 1 respectively, to aid visualization. C shows
MLP likelihoods in green for four random parameter vectors, overlaid on top of a
sample of 100 KDE-based empirical likelihoods derived from 100k samples each. The
MLP mirrors the KDE likelihoods despite not having been explicitly trained on these
parameters. Moreover, the MLP likelihood sits firmly at the mean of sample of 100
KDE’s. Negative and positive reaction times are to be interpreted as for B. . . . . . 88

3.5 Simple DDM Parameter recovery results for, A analytic likelihood (ground truth), B
MLP trained on analytic likelihood, C MLP trained on KDE-based likelihoods (100K
simulations per KDE), D CNN trained on binned likelihoods. The results represent
posterior means, based on inference over datasets of size N1 = 1024 "trials". Dot
shading is based on parameter-wise normalized posterior variance, with lighter shades
indicating larger posterior uncertainty of the parameter estimate. . . . . . . . . . . . 90

3.6 Inference using LANs recovers posterior uncertainty. Here we leverage the analytic
solution for the DDM to plot the “ground truth" posterior variance on the x-axis,
against the posterior variance from the LANs on the y-axis. Left. MLPs trained on
the analytic likelihood. Middle. MLPs trained on KDE-based emprical likelihoods.
Right. CNNs trained on binned empirical likelihoods. Datasets were equivalent across
methods for each model (left to right) and involved n = 1024 samples. . . . . . . . . 91

3.7 LC model parameter recovery and posterior predictives. Left. Parameter recovery
results for the MLP (top) and CNN (bottom). Right. Posterior predictive plots for
two representative datasets. Model samples of all parameters (black) match those
from the true generative model (red), but one can see that for the lower dataset, the
bound trajectory is somewhat more uncertain (more dispersion of the bound). In
both cases, the posterior predictive (black histograms) is shown as predicted choice
proportions and RT distributions for upper and lower boundary responses, overlaid on
top of the ground truth data (red; hardly visible since overlapping / matching). . . . 91
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3.8 WEIBULL model parameter recovery and posterior predictives.Left. Parameter
recovery results for the MLP (top) and CNN (bottom). Right. Posterior predictive
plots for two representative datasets in which parameters were poorly estimated
(denoted in blue on the left). In these examples, model samples (black) recapitulate
the generative parameters (red) for the non-boundary parameters, the recovered bound
trajectory is poorly estimated relative to the ground truth, despite excellent posterior
predictives in both cases (RT distributions for upper and lower boundary, same scheme
as Figure 3.7). Nevertheless, one can see that the net decision boundary is adequately
recovered within the range of the RT data that are observed. Across all datasets, the
net boundary B(t) = a ∗ exp

(
− t

β

α
)

is well recovered within the range of the data
observed, and somewhat less so outside of the data, despite poor recovery of individual
Weibull parameters α and β. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.9 A Comparison of sampler timings for the MLP and CNN methods, for datasets of
size 1024 and 4096 (respectively MLP-1024, MLP-4096, CNN-1024, CNN-4096). For
comparison, we include a lower bound estimate of the sample timings using traditional
PDA approach during online inference (using 100k online simulations for each parameter
vector).100K simulations were used because we found this to be required for sufficiently
smooth likelihood evaluations and is the number of simulations used to train our
networks; fewer samples can of course be used at the cost of worse estimation, and only
marginal speed up since the resulting noise in likelihood evaluations tends to prevent
chain-mixing; see Holmes, 2015). We arrive at 100k seconds via simple arithmetic. It
took our slice samplers on average approximately 200k likelihood evaluations to arrive
at 2000 samples from the posterior. Taking 500ms∗200000 gives the reported number.
Note that this is a generous but rough estimate, since the cost of data-simulation varies
across simulators (usually quite a bit higher than the DDM simulator). Note further
that these timings scale linearly with the number of participants and task conditions
for the online method, but not for LANs, where they can be in principle be parallelized.
B Compares the timings for obtaining a single likelihood evaluation for a given dataset.
MLP and CNN refer to Tensorflow implementations of the corresponding networks.
Navarro Fuss, refers to a cython (Behnel et al., 2010) (cpu) implementation of the
algorithm suggested Navarro and Fuss, 2009 for fast evaluation of the analytical
likelihood of the DDM. 100k-sim refers to the time it took a highly optimized cython
(cpu) version of a DDM-sampler to generate 100k simulations (averaged across 100
parameter vectors). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
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3.10 Illustrates common inference scenarios applied in the cognitive neurosciences and
enabled by our amortization methods. The figure uses standard plate notation for
probabilistic graphical models. White single circles represent random variables, white
double circles represent variables computed deterministically from their inputs, and
grey circles represent observations. For illustration we split the parameter vector of
our simulator model (which we call θ in the rest of the paper) into two parts θ and λ,
since some but not all parameters may sometimes vary across conditions and / or come
from global distribution. (Upper left) basic hierarchical model across M participants,
with N observations (trials) per participant. Parameters for individuals are assumed
to be drawn from group distributions. (Upper right) hierarchical models which further
estimate the impact of trial-wise neural regressors onto model parameters. (Lower left)
non-hierarchical, standard model estimating one set of parameters across all trials.
(Lower right), common inference scenario in which a subset of parameters (θ) are
estimated to vary across conditions M, while others (λ) are global. LANs can be
immediately re-purposed for all of these scenarios (and more) without further training. 96

3.11 Hierarchical inference results using the MLP likelihood imported into the HDDM
package. A posterior inference for the LC model on a synthetic dataset with 5
participants and 500 trials each. Posterior distributions are shown with caterpillar plots
(thick lines correspond to 5− 95 percentiles, thin lines correspond to 1− 99 percentiles)
grouped by parameters (ordered from above {subject1, ..., subjectn, µgroupσgroup}).
Ground truth simulated values denoted in red. B Hierarchical inference for synthetic
data comprising 20 participants and 500 trials each. µ and σ indicate the group level
mean and variance parameters. Estimates of group level posteriors improve with more
participants as expected with hierarchical methods. Individual level parameters are
highly accurate for each participant in both scenarios. . . . . . . . . . . . . . . . . . 97

3.12 Effect of multiple experimental conditions on inference. The panel shows an example
of posterior inference for 1, (left), 5 (middle) and 10 (right) conditions. A and
B, refer to the Full-DDM and Levy models respectively. The drift parameter v is
estimated to vary across conditions, while the other parameters are treated as global
across conditions. Inference tends to improve for all global parameters when adding
experimental conditions. Importantly this is particularly evident for parameters that
are otherwise notoriously difficult to estimate, such as sv (trial by trial variance in
drift in the Full-DDM model) and α (the noise distribution in the Levy model). Red
stripes show the ground truth values of the given parameters. . . . . . . . . . . . . . 98

3.13 A Shows the training and validation loss for Huber as well as MSE for the DDM-SDV
model. Training was driven by the Huber loss. B Illustrates the likelihood manifolds,
by varying one parameter in the trained region. C shows MLP likelihoods in green, on
top of a sample of 50 KDE-based empirical likelihoods derived from 20k samples each. 114
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3.14 A Shows the training and validation loss for Huber as well as MSE for the LC model.
Training was driven by the Huber loss. B Illustrates the likelihood manifolds, by
varying one parameter in the trained region. C shows MLP likelihoods in green, on
top of a sample of 50 KDE-based empirical likelihoods derived from 20k samples each. 114

3.15 A Shows the training and validation loss for Huber as well as MSE for the WEIBULL
model. Training was driven by the Huber loss. B Illustrates the likelihood manifolds,
by varying one parameter in the trained region. C shows MLP likelihoods in green, on
top of a sample of 50 KDE-based empirical likelihoods derived from 100k samples each.115

3.16 A Shows the training and validation loss for Huber as well as MSE for the Levy model.
Training was driven by the Huber loss. B Illustrates the likelihood manifolds, by
varying one parameter in the trained region. C shows MLP likelihoods in green, on
top of a sample of 50 KDE-based empirical likelihoods derived from 100k samples each.115

3.17 A Shows the training and validation loss for Huber as well as MSE for the ORNSTEIN
model. Training was driven by the Huber loss. B Illustrates the likelihood manifolds,
by varying one parameter in the trained region. C shows MLP likelihoods in green, on
top of a sample of 50 KDE-based empirical likelihoods derived from 100k samples each.116

3.18 A Shows the training and validation loss for Huber as well as MSE for the Full-DDM
model. Training was driven by the Huber loss. B Illustrates the likelihood manifolds,
by varying one parameter in the trained region. C shows MLP likelihoods in green, on
top of a sample of 50 KDE-based empirical likelihoods derived from 100k samples each.116

4.1 Drift Diffusion Model and some example applications. . . . . . . . . . . . . . . . . . 125
4.2 Depiction of the general idea behind likelihood approximation networks. We use a

simulator of a likelihood-free cognitive process model to generate training data. This
training data is then used to train a neural network which predicts the log-likelihood
for a given feature vector consisting of model parameters, as well as a particular choice
and reaction time. This neural network then acts as a stand-in for a likelihood function
facilitating approximate Bayesian inference. Crucially these networks are then fully
and flexibly reusable for inference on data derived from any experimental design. . . 129

4.3 Graphical examples for some of the sequential sampling included in HDDM. . . . . . 131
4.4 Example of a kde_vs_lan_likelihoods plot. If the green (deterministic) and gray

(stochastic) lines overlap, then the approximate likelihood (MLP for multilayered
perceptron, the neural network that provides our LAN) is a good fit to the actual
likelihood. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.5 Example of a caterpillar_plot. The plot, split by model parameters, shows the
99% (line-ends) and 95% (gray band ends) highest density intervals (HDIs) of the
posterior for each parameter. Multiple styling options exist. . . . . . . . . . . . . . . 137
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4.6 Example of a posterior_pair_plot in the context of parameter recovery. The plot
is organized per stochastic node (here, grouped by the 'subj_idx' column where in
this example 'subj_idx' = '0'). The diagonal shows the marginal posterior of a
given parameter as a histogram. The elements below the diagonal show pair-wise
posteriors via (approximate) level curves. These plots are especially useful to identify
parameter collinearities, which indicate parameter-tradeoffs and can hint at issues
with identifiability. This example shows how the theta (boundary collapse) and a
(boundary separation) parameters as well as the t (non-decision time) and a parameters
trade-off in the posterior. We refer to Fengler et al., 2021 for parameter recovery
results using the underlying angle SSM. We note that such parameter trade-offs and
attached identifiability issues derive not just from a given likelihood model, but are
also affected by the data and parameter structure as task design and modeling choices.138

4.7 Example of a model_plot. This plot shows the underlying data in blue, choices and
reaction times presented as histograms (positive y-axis for choice option 1, negative
y-axis or choice option 0 or −1). The black histograms show the reaction times and
choices under the parameters corresponding to the posterior mean. In addition the
plot shows a graphical depiction of the model corresponding to parameters drawn from
the posterior distribution in black. Various options exist to add and drop elements
from this plot; the provided example corresponds to what we consider the most useful
settings for purposes of illustration. Note that, in the interest of space, we only
illustrate the first six subjects here. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.8 Contrasting the posterior predictive of the angle and DDM model on an example
subject. A) shows the angle model and B) shows the DDM. While the fits are not
dramatically better for this dataset (in our experience more extreme differences can
be seen in other cases), the angle model shows two characteristic differences to the
DDM model fit. First, it better captures the graceful initial increase in density for
short reaction times. Second, it captures the slower decrease in density for longer
reaction times, as compared to the DDM, for which the reaction time density falls of
quicker than is apparent in the data. Both of these effects are directly produced by
allowing a collapsing bound, instead of the DDM’s static, parallel bounds. . . . . . 139

4.9 Example of a caterpillar_plot. The plot is split by model parameter kind, showing
parameter-wise, the 99% (line-ends) and 95% (gray band ends) highest density intervals
(HDIs) of the posterior. In the context of parameter recovery studies, the user can
provide ground-truth parameters to the plot, which will be shown as blue tick-marks
on top of the HDIs. Multiple styling options exist. Note, in the interest of space,
we show only three of the five basic parameters here. ['v', 'a', 'theta'] of the
underlying model (leaving out ['z', 't']). . . . . . . . . . . . . . . . . . . . . . . . 142
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4.10 Example of a model_plot. This plot shows the underlying data in blue, choices and
reaction times presented as a histogram (positive y-axis for choice option 1, negative
y-axis or choice option 0 or −1). The black histograms show the reaction times and
choices under the parameters corresponding to the posterior mean. In addition the
plot shows a graphical depiction of the model corresponding to parameters drawn from
the posterior distribution in black, as well as such a depiction for the ground truth
parameters in blue, in case these were provided (e.g., if one is performing recovery from
simulated data). Inclusion of the ground truth parameters distinguishes the present
display form Figure 4.7. Various options exist to add and drop elements from this
plot, the provided example corresponds to what we consider the most useful settings
for purposes of illustration. Note that, in the interest of space, we only illustrate the
first six subjects here. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.11 Example of a posterior_pair_plot in the context of parameter recovery. The plot is
organized per stochastic node (here, grouped by the 'stim' and 'subj_idx' columns
where in this example ('stim' = 'LL', 'subj_idx' = '0'). The diagonal show the
marginal posterior of a given parameter as a histogram, adding the ground truth
parameter as a blue tick-mark. The elements below the diagonal show pair-wise
posteriors via (approximate) level curves, and add the respective ground truths as a
blue cross. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4.12 RLSSM - combining reinforcement learning and sequential sampling models. . . . . 147
4.13 Parameter recovery on a sample synthetic dataset using RL+Weibull model. Posterior

distributions for subject-level and group-level parameters are shown using caterpillar
plots. The thick black lines correspond to 5-95 percentiles, thin black lines correspond
to 1-99 percentiles. The blue tick-marks show the ground truth values of respective
parameters. Note, in the interest of space, we show only a subset of the parameters
of the model - the two boundary parameters alpha and beta and the reinforcement
learning rate rl_alpha. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.1 High level overview of the LAN framework. For a given model M, we sample
model parameters θ from a region of interest (left 1), then run simulations (upper
left). We use those simulations to construct a KDE-based empirical likelihood. The
combination of parameters and the respective likelihood is then used to train the
likelihood approximation network (middle). Once trained we can use the MLP for
posterior inference given an empirical / experimental dataset (right). . . . . . . . . . 164
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5.2 Illustration of runtime distributions across datasets for the two type of data structures
considered. (Left) Single subject data of 500 trials each, and ( right ) hierarchical
data which includes 20 subjects with 500 trials each. Two types of runtime metrics
are reported, which are relevant for the VI algorithms under consideration. Total
Runtime (top), which refers to the VI runtimes for the predetermined number of 2000
optimizer steps, and Runtime until SVI reaches min loss (bottom), which calculates
runtime for VI algorithms based on how many optimizer steps were needed to find
the actual minimum ELBO in the sequence of 2000 predetermined steps. Across the
panels, four broad types of algorithms are shown with different settings (hardware
and/or hyperparameters). HDDM refers to MCMC runs utilizing the HDDM python
toolbox (Wiecki, Sofer, and Frank, 2013). NUTS refers to MCMC runs utilizing the
No-U-Turn Sampler (Hoffman and Gelman, 2014) via the NumPyro python package
(Phan, Pradhan, and Jankowiak, 2019), and VI via the Pyro python package (Bingham
et al., 2019). VI uses two respective variational distributions, a Normal distribution
with isotropic covariance structure (Normal-ISO) and a Normal distribution with full
covariance structure (Normal). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

5.3 Runtime comparison for the MCMC algorithms under consideration. The metric is
Effective Samples per Second. NUTS generally outperforms HDDM (and its slice
sampler), with increasing benefits for hierarchical data structures compared to the
single subject case. NUTS via NumPyro (Phan, Pradhan, and Jankowiak, 2019) can
exploit batch-processing using the GPU across the whole dataset, which leads to
massive speedups for large/hierarchical datasets. . . . . . . . . . . . . . . . . . . . . 176

5.4 Illustration of runtime aspects for the VI algorithms under consideration. I show
respectively for the single subject (LEFT ) and hierarchical (RIGHT ) cases, how many
steps of the optimizer where necessary to reach the final reported ELBO minimum (the
left of two subplots in each case, with ELBO - min title) and the ELBO minimum plus
one standard deviation (computed from the tail of the loss trajectory, respectively the
right of two subplots, with ELBI - min plus std title). The 2000 optimizer steps were
chosen naively a-priori for all numerical experiments. Roughly 1000 optimizer steps
would have been sufficient to find the reported ELBO minimum. Moreover, since most
losses end in a long tail of minimal fluctuations, it is reasonable to not consider the
ELBO minumum, but instead a representative ’average’ for which I added 1 standard
deviation of this tail loss trajectory to the ELBO minimum. This benchmark was
achieved in less than 500 optimizer steps for the vast majority of cases, suggesting
that the runtime for VI algorithms can be further reduced. . . . . . . . . . . . . . . 177
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5.5 Depiction of parameter recovery performance for the DDM model, across the four
general algorithms tested (HDDM, NUTS, VI via IMVNs, VI via MVNs). The R2

statistics from a basic regression of ground truth on recovered parameters are reported
for each parameter of the model, respectively for each algorithmic approach. The
dots are colored according to the choice probability towards choice 1 in the underlying
observed datasets. Yellow for choice probability 0 and red for choice probability 1.
Parameter recovery is extremely similar across all methods, with R2 values being
nearly identical. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

5.6 Another look at the similarities between the parameter recovery performance across
the four tested algorithms. The example shows their respective similar values for the
a parameter of the DDM. The performance on other parameters looks qualitatively
identical. The heatmap (right) shows that the correlation between methods is very
close to 1 across the board. The pairwise plot (left) similarly presents essentially
unity lines of recovered parameter values across all methods (the parameter values are
extremely close to identical across the board). . . . . . . . . . . . . . . . . . . . . . . 179

5.7 Depiction of parameter recovery performance for the DDM model, across the four
general algorithms tested (HDDM, NUTS, VI via IMVNs, VI via MVNs). The R2

statistics from a basic regression of ground truth on recovered parameters are reported
for each parameter of the model, respectively for each algorithmic approach. Here I
consider the hierarchical datasets, and group level mean (µ, _mu_mu in the titles)
parameters are reported. The dots are colored according to the probability of choosing
1 in the underlying observed datasets. Yellow for choice probability 0 and red for
choice probability 1. Parameter recovery is extremely similar across all methods, with
nearly identical R2 values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

5.8 Depiction of parameter recovery performance for the DDM model, across the four
general algorithms tested (HDDM, NUTS, VI via IMVNs, VI via MVNs). The R2

statistics from a basic regression of ground truth on recovered parameters are reported
for each parameter of the model, respectively for each algorithmic approach. Here I
consider the hierarchical datasets, and group-level standard deviation (σ, mu_std in
the titles) parameters are reported. The dots are colored according to the probability
of choosing 1 in the underlying observed datasets. Yellow for choice probability 0
and red for choice probability 1. Parameter recovery is extremely similar across all
methods, with R2 values nearly identical. . . . . . . . . . . . . . . . . . . . . . . . . 181
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5.9 Another look at the similarities between the parameter recovery performance across
the four tested algorithms, here for group mean parameters concerning hierarchical
datasets. The example shows the respective similar values for the a group mean
parameter of the DDM. The performance on other parameters looks qualitative
identical. The heatmap (right) shows that the correlation between methods is very
close to 1 across the board. The pairwise plot (left) paints a similar picture, presents
essentially unity lines of recovered parameter values across all methods (the parameter
values are extremely close to identical across the board). . . . . . . . . . . . . . . . . 182

5.10 Another look at the similarities between the parameter recovery performance across
the four tested algorithms, here for group standard deviation parameters concerning
hierarchical datasets. The example shows the respective similarities for the a group
standard deviation parameter of the DDM. The performance on other parameters looks
qualitative identical. Via the heatmap one can observe (right) that the correlation
between methods is very close to 1 across the board. Another via is afforded by the
pairwise plot (left) which presents essentially unity lines of recovered parameter values
across all methods (the parameter values are extremely close to identical across the
board). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

5.11 Example of actual (pairwise) posteriors across a selection of tested algorithms. One can
see how the generated posteriors are nearly identical for HDDM (blue), NUTS (gray)
and VI with full covariance matrices (orange and red). In contrast to the single subject
datasets, VI using IMVNs performs essentially identically to the other algorithms,
since at the group level one doesn’t observe strong parameter correlations. Hypothesis
testing based on posteriors from the IMVN-VI algorithm will therefore tend to inflate
the Type I error probability (percentage of falsely rejected null hypotheses, or in other
words wrongly detected effects). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

5.12 Failure modes of calibration as they appear in SBC rank plots. A uniform distribution
of p-values suggests good calibration (top). An inverse-U shape suggests under-
confident posteriors, i.e., posteriors that are too wide (upper left). A U shape suggests
overconfident, or overly narrow, posteriors (upper right). A positive slope suggests
a tendency to underestimate a parameter (lower left). A negative slope suggest a
tendency to overestimate a parameter (lower right). . . . . . . . . . . . . . . . . . . 186

5.13 Simulation-based calibration (Talts et al., 2018) plots by DDM parameter for single
subject datasets, split by the four inference algorithms under consideration. Note that
HDDM, NUTS and VI using MVN variational posteriors are generally well calibrated,
apart from a slight bias in the non decision time (it tends to be slightly underestimated)
and an even smaller consequent bias in the boundary parameter a. VI with IMVN
posteriors shows worse calibration. As a result of overly narrow posterior distributions,
more p-values cluster at the extremes of 0 and 1. . . . . . . . . . . . . . . . . . . . . 187
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5.14 Example of actual (pairwise) posteriors across a selection of tested algorithms. The
generated posteriors are nearly identical for HDDM (blue), NUTS (gray) and VI with
full covariance matrices (orange and red). VI using IMVNs (essentially VI under the
mean-field assumption with marginal Normal distributions), suffers from mode-seeking
behavior. Since covariances are ignored, one finds a posterior which is correct in
the mean estimate, but too narrow. Hypothesis testing based on posteriors from
the IMVN-VI algorithm will therefore tend to inflate the Type I error probability
(percentage of falsely rejected null hypotheses or wrongly detected effects). . . . . . . 188

5.15 Simulation-based calibration (Talts et al., 2018) plots by DDM parameter for single
subject datasets, split by the four inference algorithms under consideration. HDDM,
NUTS and VI with MVN posteriors are generally well calibrated, apart from a slight
bias in the non-decision time (it tends to be slightly underestimated) and a resulting
even slighter bias in the boundary parameter a. VI with IMVN posterior shows worse
calibration. As a result of overly narrow posterior distributions, more p-values cluster
at the extremes of 0 and 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

5.16 Simulation based calibration (Talts et al., 2018) plots by DDM parameter for hier-
archical datasets, split by the four inference algorithms under consideration. The
HDDM, NUTS and both VI approaches are generally well calibrated at the group
standard deviation level, the bias concerning non-decision times does not translate to
a bias in the group standard deviation. There seems to be a slight bias in the bias
parameter z for HDDM and both VI algorithms, which does not persist under NUTS.
This may result from unintionally informative priors. . . . . . . . . . . . . . . . . . . 190

5.17 Example posterior from Bayesian parameter estimation with the ANGLE model.
MVN variational posteriors (Variational - Normal in the Figure, red), track both
NUTS (gray) and HDDM (blue) posterior shapes closely, successfully capturing extant
posterior correlations. IMVN variational posteriors, as opposed to the equivalent plot
in Figure 5.14 for the DDM, are ignored here, since the posterior correlations make
IMVN application hopeless from the perspective of capturing posterior uncertainty
accurately. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

5.18 Parameter recovery and calibration plots for the ANGLE model using NUTS and VI
through MVNs (Variational - Normal in the Figure). NUTS as well as VI suffer from a
few outliers (top). Visual inspection of the calibration plots (bottom) suggests NUTS
to be somewhat better calibrated than VI with MVNs for the ANGLE model, while
mean parameter recovery is slightly superior using VI. . . . . . . . . . . . . . . . . . 192
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5.19 Parameter recovery for the ANGLE model using NUTS and VI (MVNs) on hierarchical
data wit 100 subjects and 100 trials each. Both VI and NUTS show a few outliers,
NUTS reporting a large fraction ( 50%) of failed runs. Estimation of group standard
deviation (right, _mu_std in the Figure) is less successful than estimation of group
means (left, _mu_mu in the Figure), with qualitatively consistent patterns across VI
and NUTS. VI however is more successfull at estimation of group standard deviation
parameters overall. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

5.20 The plot shows the calibration performance (Talts et al., 2018) of NUTS and VI on
the ANGLE model for hierarchical datasets of 100 subjects, 100 trials each. While
calibration as reported here suggests NUTS to be superior, note that the results reflect
only NUTS runs which resulted in R̂ < 1.01. Indeed 50% of NUTS runs needed to be
deleted for insufficient convergence as per this metric. . . . . . . . . . . . . . . . . . 194
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Abstract of “Likelihood Approximations for Bayesian Analysis of Sequential Sampling Models” by
Alexander Fengler, Ph.D., Brown University, December 2022.

Computational Modeling is a significant part of cognitive neuroscience. It allows arbitration between
suggested models by virtue of quantitative fits to behavioral, brain and other data. Such fits are
often derived via the machinery of Bayesian statistics. The resulting focus on posterior distributions
over model parameters, instead of single point estimates, allows thorough investigation of model
properties, including parameter trade-offs, as well as the intelligent infusion of prior knowledge into
estimation problems by virtue of specification of prior distributions over said parameters. However
an important limitation of the standard Bayesian approach is the reliance on easy to compute
likelihood functions to render inference computationally tractable. Utilizing the power of Bayesian
statistical inference is complicated by an important aspect of the computational scientist’s day to
day operations. Newly developed computational models, exactly when they present themselves
at the cutting edge frontier of the research landscape, are often available only as data simulators,
without the convenience of separately derived analytical likelihood functions, therefore limiting the
application of sophisticated statistical machinery for parameter inference. This issue has spurred a
host of research activity in the last one and a half decades aiming at tractable Bayesian inference
directly from data simulators. The main work in this thesis deals with a particular approach to this
problem, which we dubbed likelihood approximation networks (LANs), one manifestation of what
has become a paradigm of using deep learning for the pre-computation (amortization) of important
derived functions from expensive simulations. Log-likelihoods are learned from model simulations via
deep neural networks. These learned likelihoods (and other quantities) are then flexibly re-usable
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General Introduction
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Statistical methods serve as the backbone of the inductive process which progresses the body of
scientific knowledge in the empirical sciences. They do so by defining the rules of a game in which
wrong hypothesis and theories shall be replaced by less wrong hypotheses and theories, in the hope
of constructing a stochastic process that, collectively embodied by the work of researchers active in a
given discipline, slowly converges closer and closer to some notion of scientific truth. The rules of the
game, as to how to adjudicate between such theories and hypotheses, are themselves of course subject
to change, driven by fierce debates in the community of statistical methodologists, famously the
development of two schools of statistics: Frequentism and Bayesianism. For the empirical scientists
this implies a need to have an eye on the paradigmatic developments of statisticians in order to
maintain the highest agreed upon standard of rigor at a given time. Demarcation lines may emerge,
defining points or periods in time where paradigms have shifted.

In cognitive neuroscience we can define three such shifts. A shift from Frequentist to Bayesian
statistics. A shift from a focus on group means to parameter estimation with stochastic generative
models of phenomena. Lastly a shift from likelihood based to Likelihood Free Inference (LFI). The
last shift, unfolding fervently in the last few decades, served as main motivation for the work in this
thesis. Refraining from precise commitments to a strict historical timeline, we characterize these
three shifts in some more detail below.

First is the shift from the once dominant paradigm of frequentist statistics, characterized by
concepts such as p-values, confidence intervals and null-hypothesis testing, towards the Bayesian
statistical paradigm, which defines as its object of interest a posterior distribution over parameters
of a given probability model (Gelman, Carlin, et al., 1995). The Frequentist / Bayesian fault
line and corresponding debates reach far into the past and deep into the foundations of statistical
science (Fisher, 1925; Neyman and Pearson, 1933; Leonard Jimmie Savage, 1959; Leonard J Savage,
1972; Lindley, 1957; Lindley, 2000; De Finetti, 1979). Frequentist approaches, epitomized by the
ubiquitous usage of p-values (and confidence intervals) to report and dignify (disgrace) scientific
results have largely dominated the landscape across a broad range of scientific disciplines (Ioannidis,
2005; Eric-Jan Wagenmakers, Wetzels, et al., 2011), including psychology, cognitive science and
neuroscience. Most recently in the wake of the so-called replication crisis in psychology and other
diciplines (C. F. Camerer et al., 2016), voices extolling the benefits of a Bayesian approach, were again
heard more prominently (Eric-Jan Wagenmakers, Marsman, et al., 2018; Eric-Jan Wagenmakers,
Love, et al., 2018) . Inflated false discovery rates (Benjamini and Hochberg, 1995; Collaboration, 2015;
Simmons, Nelson, and Simonsohn, 2016), the rate at which claimed discoveries end up being false
positives, were linked to the misuse of p-values as a reporting tool for scientific results (Greenland
et al., 2016; McShane et al., 2019; Gibson, 2021), resulting in a slew of recommendations concerning
the improvement of research methodology (McShane et al., 2019; Ioannidis, 2015; Daniel Lakens et al.,
2018; Daniël Lakens, 2021; Benjamin et al., 2018). The Bayesian approach has a few noteworthy
virtues, including the ability to directly incorporate knowledge about the a priori probability of
hypothesis to be true (via prior specification), by which false discovery rates can be regulated in an
intuitive manner (Eric-Jan Wagenmakers, Marsman, et al., 2018; Eric-Jan Wagenmakers, Wetzels,
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et al., 2011).
Much has been written in this regard, however important for the work presented here that we

can observe an overall shift towards the Bayesian approach. This manifests in the increasing chance
to encounter researchers with at least a passing familiarity of Bayesian inference as well es in the
proliferation of related teaching materials and supporting software packages (Plummer et al., 2003;
Gelman, Carlin, et al., 1995; Gelman and Hill, 2006; Lee and Eric-Jan Wagenmakers, 2014; Kruschke,
2014; McElreath, 2020; Love et al., 2019; Eric-Jan Wagenmakers, Love, et al., 2018; Carpenter et al.,
2017; Phan, Pradhan, and Jankowiak, 2019; Bingham et al., 2019; Salvatier, Wiecki, and Fonnesbeck,
2016; Ntzoufras, 2011; D. J. Lunn et al., 2000; D. Lunn et al., 2009; Murphy, 2007).

Second, we can observe a rise in ambition as to what constitutes a model and correspondingly
what defines the object that serves as the basis for inference algorithms. The canonical statistical
curriculum for experimental scientists was formed by frequentist techniques for the systematic
analysis of the behavior of group means across experimental treatments. Orthodox examples are
such (still quite ubiquitously applied) methods as the analysis of variance (ANOVA) or the analysis
of covariances (ANCOVA). Essentially, the focus of analysis is whether the difference between some
or all group means (a group can be defined by a cohort of subjects and / or by a variation in
experimental condition) is statistically significantly different from the difference expected under a
so-called null-model, which one wishes to reject. This paradigm is slowly giving way to another mode
of thinking about what constitutes a statistical model. Increasingly, computationally minded cognitive
scientists and neuroscientists are not satisfied with the definition of a theory or model as a simple
collection of expected group means or the expected violation of a specified null pattern of group means.
Instead recent decades have seen an increased use of generative computational models, shifting the
statistical analysis focus towards parameter estimation and away from the simple discrimination
of group means. This in turn reinforces the shift towards Bayesian approaches, since the Bayesian
analysis toolbox deals with important aspects of parameter inference, such as the investigation of
parameter trade-offs, more naturally than other commonly used inference approaches like maximum
likelihood estimation (Gelman, Carlin, et al., 1995; McElreath, 2020). These models can give detailed
computational accounts of, e.g., the choice processes underlying perceptual discrimination tasks and
allow rigorous quantitative fits to multiple aspects of behavior and brain data.

A prime example of this shift in mindset is exemplified by the drift diffusion model (Ratcliff,
1978a; Ratcliff and McKoon, 2008; Ratcliff, Smith, et al., 2016), originally proposed as a joint account
of reaction times and choices in memory tasks (Ratcliff, 1978a). This model has a decades-old history
of applications (Ratcliff, Smith, et al., 2016) and variations of this model are still being proposed
(Wieschen, A. Voss, and S. Radev, 2020; Cisek, Puskas, and El-Murr, 2009a; Holmes, Trueblood,
and Heathcote, 2016; Trueblood et al., 2021; Tillman, Van Zandt, and Logan, 2020). Perhaps the
most influential software package to aid researchers in fitting these models to experimental data, is
the HDDM package for Python (Wiecki, Sofer, and Frank, 2013). Unlike its competitors (A. Voss
and J. Voss, 2007; Vandekerckhove and Tuerlinckx, 2008; Drugowitsch, 2016; Shinn, Lam, and
J. D. Murray, 2020; Ahn, Haines, and Zhang, 2017; Heathcote et al., 2019), it fully embraces the
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Bayesian approach and has been applied to a large variety of experimental settings, offering great
flexibility in accommodating a variety of experimental designs.

More recently, we observe the third shift from likelihood-based methods towards a broader
adoption of likelihood-free methods for inference (discussed in detail in chapter 2). This can be
viewed as an inevitable consequence of the shift towards computational mechanistic models mentioned
above and its resulting world of possible generative models which become candidates for investigation.
A major selling point, and crucial factor in the adoption of Bayesian methods, is the promise that
the Bayesian paradigm allows researchers to flexibly express their ideas and theories as stochastic
generative models followed by a simple invocation of the Bayesian statistical toolbox (typically one or
another Markov Chain Monte Carlo method) to perform inference over respective parameters. The
Markov Chain Monte Carlo Revolution (Diaconis, 2009; C. Robert and Casella, 2011) (simultaneous
advances in computing hardware and techniques for posterior sampling) notwithstanding, a crucial
detail usually remains implicit only to rear its head again further down the road: standard Bayesian
methods rely on the repeated evaluation of the right hand side in Bayes rule,

p(θ|x) ∝ p(x|θ)p(θ)

Here θ is the parameter vector of interest, x is the observed data, p(θ) is called the prior
distribution over said parameter vector, p(x|θ) is called the likelihood (which for a given parameter
vector determines a probability distribution over possible outcomes of our main generative model)
and p(θ|x) is the posterior distribution over parameters given the observed data, our main object of
interest. We notice that the evaluation of the right hand side crucially depends on the ability to
evaluate p(x|θ). Now, it is often much easier to write a simulator (that is, a function from which we
can generate data given some input parameters), than it is to derive an analytical likelihood for said
simulator. This puts a dent in the Bayesian promise concerning expressive modeling, which is in
fact anchored to the ability to provide such analytical likelihoods a priori. Without easy to evaluate
likelihoods, standard inference algorithms cannot be applied.

Recognizing that many such likelihood functions may be difficult to derive analytically, if not
completely intractable, instigated a growing research program focused on statistical methods for
Bayesian inference in the likelihood-free setting (Sisson, Fan, and M. Beaumont, 2018). In this setting,
access to a simulator is granted, but no corresponding analytical likelihood functions. Any inference
pipeline has to proceed from this starting point. A likelihood function can be approximated only
empirically here, using, e.g., Monte Carlo simulation (C. P. Robert, Casella, and Casella, 1999). A
prime motivating and canonical example is the Lotka-Volterra predator-prey model (Lotka, 1925;
Volterra, 1926), utilized routinely in the field of computational biology. This model is integral to
the discipline, but Bayesian parameter estimation is notoriously hard due to a lack of closed-form
likelihoods (M. A. Beaumont, 2010).

An essential example in the cognitive and neurosciences can be found in the realm of cognitive
process models for the joint analysis of reaction time and choice data., The so-called Ratcliff Diffusion
Model (Ratcliff, 1978b; Ratcliff, Smith, et al., 2016) forms the seed of a whole class of applicable
computational models, dubbed Sequential Sampling Models (SSMs). Conceptually the idea behind
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these models is to treat a decision process as a diffusion to bound mechanism, where momentary
evidence is integrated over time to drive a decision particle across a prespecified bound. The time-
point and location of these boundary crossings jointly represent reaction times and choices (these
models will be explained in more detail in 2 and 3). Importantly, the class of SSMs subsumes a host
of theoretically significant variations on the drift diffusion model (DDM) (Ratcliff, 1978a; Ratcliff,
Smith, et al., 2016), which may incorporate more complicated boundary regions (Cisek, Puskas,
and El-Murr, 2009b; Cisek, Puskas, and El-Murr, 2009a; Malhotra et al., 2018; Palestro et al.,
2018; Evans, Trueblood, and Holmes, 2020), excitation/inhibition (Usher and McClelland, 2001) or
attention (Krajbich, Lu, et al., 2012a) mechanisms , as well as other additions (Wieschen, A. Voss,
and S. Radev, 2020; Pedersen, Frank, and Biele, 2017) deemed necessary to capture empirical data
collected across a growing range of experimental paradigms (Krajbich and Rangel, 2011; Krajbich,
Lu, et al., 2012b; Cavanagh and Frank, 2014; Pedersen, Frank, and Biele, 2017; Herz et al., 2016).
These models have strong theoretical support and have garnered wide interest. However, publications
that combine computational modeling with empirical data analysis have nearly exclusively focused on
the most basic variants of SSMs or close and equally-simple competitors (S. D. Brown and Heathcote,
2008; Holmes, Trueblood, and Heathcote, 2016; Tillman, Van Zandt, and Logan, 2020). The reason
is, again, a lack of analytic likelihoods. Few examples to the contrary existed until recently a
surge of new likelihood-free methods received attention (Turner and Sederberg, 2014; Holmes, 2015;
S. T. Radev et al., 2020; Greenberg, Nonnenmacher, and Macke, 2019; Fengler et al., 2021; Boelts
et al., 2022). These methods go by various names, Simulation Based Inference (SBI), Approximate
Bayesian Computation (ABC) and Likelihood Free Inference (LFI) being common. I will use them
interchangeably, favoring SBI (Cranmer, Brehmer, and Louppe, 2020).

The work in this thesis is motivated by the potential I see in the methods emerging from this
shift towards likelihood-free inference and chapter 2 will discuss a large variety of these approaches
in detail. I believe that progress on the front of SBI algorithms will help to fully realize the Bayesian
promise towards expressive modeling, spurred by scientists’ creativity in designing mechanistic models,
instead of expertise in mathematical statistics. While the methods I develop in the following are
much more general, the discussion will mostly focus on the application to the aforementioned class of
SSMs, which has proved to be of great interest to the cognitive science and neuroscience communities.
By targeting this relevant and rich class of models, and hence concentrating efforts, I hope that the
work exhibited in the following chapters will serve the community of cognitive modelers by ultimately
allowing for the discovery of new scientific insights. On the other hand I hope to have contributed
a layer to the foundation of methods which I believe will shake the computational sciences more
generally in the decades to come (Papamakarios and I. Murray, 2016; Papamakarios, Pavlakou,
and I. Murray, 2017; Papamakarios, Sterratt, and I. Murray, 2019; Durkan et al., 2019; Greenberg,
Nonnenmacher, and Macke, 2019; Lueckmann et al., 2019; S. T. Radev et al., 2020; Fengler et al.,
2021; Boelts et al., 2022).

This thesis is organized as follows. chapter 2 provides an in-depth review of SBI methods, focused
in particular on the emerging intersection between Neural Networks and Simulation Based Inference
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based inference. Pointers to applications in the cognitive neurosciences help contextualize this
review with an eye toward these disciplines as target for application. chapter 3 presents our main
contribution to the staple of SBI algorithms: Likelihood approximation networks. I specifically show
how this algorithm can be applied to the broad class of cognitive process models under the category
of sequential sampling models, and how it distinguishes itself from other competing algorithms in
the space of SBI. The following two chapters present natural progressions of the work exhibited in
chapter 3. First, chapter 4 presents a tutorial introduction to an extension of the HDDM Python
software package, which provides, amongst other innovations, access to likelihood approximation
networks, and shows how they can be combined with reinforcement learning models. We discuss
how this and other such software can serve as a catalyst for the adoption of likelihood-free inference
methods by the wider research community, eventually leading to advances regarding the core scientific
questions in the cognitive and neurosciences. Second, chapter 5 presents a proof of concept application
of likelihood approximation networks in the context of modern inference algorithms. The work
in chapter 5 is motivated by the desire to further improve the speed of inference, which in turn
allows experimental cognitive- and neuroscientists to test a wider range of candidate models against
their empirical data. I close in chapter 6 with a general discussion of the research presented in the
preceding chapters.
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Chapter 2

An overview of deep learning based
approximate Bayesian inference

This paper reviews the history of Approximate Bayesian Computation with focus on recent methodolog-
ical advances stemming from a fruitful cross-pollination with probabilistic deep learning approaches.
I pay particular attention to the benefits of these methods for experimental and theoretical cognitive
neuroscientists. The promise of these emerging methods is a substantial increase in the class of
computational models for which Bayesian inference is feasible, which may result in disruptive changes
in the discipline as a whole.
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2.1 Introduction

Computational modeling has carved out a substantial niche in cognitive neuroscience today. Compu-
tational models can guide the principled interpretations of functional demands of cognitive systems,
while at best also maintaining a level of analytical tractability in producing quantitative fits between
brain and behavior data. A prominent example is the application of reinforcement-learning (Sutton
and Barto, 2018) models to interpret brain and behavioral data (Collins and Frank, 2014; Maia
and Frank, 2011; Dayan and Niv, 2008). These have been used to interpret cognitive markers of
Parkinson’s disease via asymmetric learning behavior (Frank, Seeberger, and O’reilly, 2004), link
genetic, neural and phamracological modulators of exploration exploitation behavior (Frank, Doll,
et al., 2009; Badre et al., 2012; Kayser et al., 2015; Zajkowski, Kossut, and Wilson, 2017), and
moreover link reward prediction errors and neural signals that are predictive of learning (Gläscher
et al., 2010; Pessiglione et al., 2006; McCoy et al., 2019). Generally, reinforcement learning models
aim to provide an account of decision sequences, for which decision making is progressively adapted
(learned) as a result of trial-wise error signals.

Other prominent examples include models of dynamic decision making processes (Busemeyer and
Townsend, 1993; Ratcliff and McKoon, 2008; Ratcliff, 1978; Brown and Heathcote, 2008; Holmes,
Trueblood, and Heathcote, 2016; Usher and McClelland, 2001; Cisek, Puskas, and El-Murr, 2009;
Krajbich, Lu, et al., 2012), which aim to jointly account for reaction time and choice data in a variety
of forced alternative choice scenarios. These models generally treat decision making as a result of a
threshold-interrupted process of evidence accumulation (although variations abound at this point)
and have been applied to a wide variety of choice modalities, (Ratcliff, Huang-Pollock, and McKoon,
2018; Ratcliff and Frank, 2012; Krajbich, Lu, et al., 2012; Milosavljevic et al., 2010; Sullivan et al.,
2015; Fisher, 2017; Bakkour et al., 2018). The parameters of such models allow for a principled
account of the impacts of, for example, reward magnitude, probabilistic reward distribution and
attention (Balci et al., 2011; Krajbich, Lu, et al., 2012; Mads Lund Pedersen, Frank, and Biele, 2017)
on decision making behavior.

Modeling frameworks may be linked, allowing one model to serve as a latent process which affects
the parameters of a second model across trials. Such a link is established between reinforcement
learning and choice/reaction time modeling (Mads Lund Pedersen, Frank, and Biele, 2017; Miletić,
Boag, and Forstmann, 2020; Fontanesi, Gluth, et al., 2019; Fontanesi, Palminteri, and Lebreton,
2019).

Similarly, EEG, fMRI (Frank, Gagne, et al., 2015; Cavanagh and Frank, 2014) and Eyetracking
(Krajbich, Armel, and Rangel, 2010; Krajbich, Lu, et al., 2012; Cavanagh, Wiecki, et al., 2014) data
may generally be used for the same purpose as latent covariate processes. Conceptual links between
theories concerning optimal allocation of cognitive resources (Lieder and Griffiths, 2020), fixation
patterns and choice / reaction time behavior, can be developed by interlocking component-wise
computational models. Figure 2.1 illustrates those connections and the interplay with (adaptive)
experimental designs pictorially.

Further motivation for the use of computational models is their potential for turning parameter



Figure 2.1. Graphical summary of the general connections between computational models discussed
in this section. In general our subjects perform one of many tasks (three examples given, with
random dot motion, brightness discrimination and dot separation). Our cognitive process model, is
the computational generative model under investigation: I assume subject data derives abstractly
from the computational process instantiated in this model. The resulting (observed) behavioral data
(right) may impact the next stimulus and / or the parameter configuration of the model (e.g. via a
process that facilitates learning from feedback). The parameters of the model may also be affected
by any type of covariate (upper right) such as fMRI BOLD / EEG signals or e.g. pupil dilation.

estimates into theoretically driven dimensionality reduction of brain / behavioral data to be used
for the prediction of e.g. clinical status in computational psychiatry (Huys, Maia, and Frank, 2016).
This contrasts purely data-driven approaches which would rely solely on machine learning techniques.
These tend to lack interpretability and therefore hamper the taxonomizing effects which cognitive
process models offer for human behavior, healthy and defective. Moreover ad-hoc data-driven
approaches tend to lack the affordances in sample complexity (Poggio, Smale, et al., 2003), which
a solid quantitative theory with few degrees of freedom provides. The parameters of such theory
driven models may therefore prove more successfull in predicting behavior or brain-states than
aforementioned data-driven approaches (Geana et al., 2022; Mads L Pedersen et al., 2021; Wiecki,
Poland, and Frank, 2015; Wiecki, Antoniades, et al., 2016). Figure 2.2, illustrates these ideas.

Despite the advantages that computational modeling undoubtedly confers, there are significant
roadblocks, which hamper its effective deployment and broader adoption.

One principal problem seems to be the necessary time investment to familiarize experimental
cognitive neuroscientists with all building blocks of the computational and statistical machinery
involved. Mastery of the mathematical / technical toolkits necessary to effectively make use many of
the cutting edge computational models and inference procedures can not be expected from the broad
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Figure 2.2. This figure, as adapted from (Huys, Maia, and Frank, 2016), conceptualizes the
distinction between machine learning based dimensionality reduction of high dimensional behavioral
(and other) datasets and an approach that utilizes computational cognitive models for the same
purpose. The discipline of computational psychiatry (while not a priori dismissive of data-driven
analysis) intends to utilize the later techniques for the purpose of basing diagnostic criteria for mental
health on the mechanistic distinction in behavior as seen through the eyes of such computational
cognitive models. This contrasts with current practices which form the criteria for classification of
mental health problems (First, 2013).

research community. The bridge between the largely separate pools of expertise (experimental and
computational) is the supply of easy to use, properly validated software which abstracts away the
details of computational and statistical machinery. Examples of such software are plentiful (Shinn,
Lam, and J. D. Murray, 2020; Wiecki, Sofer, and Frank, 2013; Vandekerckhove and Tuerlinckx, 2008;
A. Voss and J. Voss, 2007) and citations suggest them to be of great use to the community, aiding
consistent application of computational (mechanistic) models in the analysis of behavioral and / or
brain data. As an example, over 400 papers made use of the HDDM Python package (Wiecki, Sofer,
and Frank, 2013) which allows hierarchical Bayesian estimation of Ratcliff Diffusion Models (DDMs)
and moreover linkage of model parameters to latent covariates such as EEG or fMRI BOLD signals
(Ratcliff, 1978; Ratcliff and McKoon, 2008).

A second fundamental roadblock to the application of computational models in the analysis of
experimental data is related to the often overlooked chasm between model construction and effective
inference procedures for parameter fitting. The conceptual construction of computational models,
the ability to construct data simulators for a given model (forward problem), and the ability to
perform inference over the parameters of such a model given observed data (inverse problem) are in
fact distinct enough to warrant extra attention. It will be the main focus of this review.

It is usually straightforward to proceed from even highly complicated model formulations to
the implementation of a respective stochastic parametric forward simulator, not least because such
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models tend to be conceived as parameterized stochastic simulators in the first place. Much harder
however tends to be the derivation of an analytical likelihood function ℓM(θ|x), the probability
(density) of a data-point x (dataset) given the parameters θ of such a model M .

Figure 2.3. The Figure illustrates the high level problem presented when working with stochastic
process models without access to a likelihood function. The forward problem, simulating data from
the model, is usually easy. The inverse problem, parameter inference given data, is usually the
difficult part. If a-priori one has access only to a simulator, performing Bayesian inference needs to
follow one of three routes. Either one derives a likelihood function for the given model M. Even
for seemingly mundane models such as the drift diffusion model, such a derivation takes enormous
mathematical expertise. Next, one can rely on traditional Likelihood Free Inference (LFI), which
often ends up computationally prohibitively expensive. Lastly, one can make use of the arsenal of
deep learning based approaches the comparative benefits of which form a major part of the content of
this review.

As it turns out, standard parameter inference procedures for probabilistic models such as maximum
likelihood estimation (MLE) which rely on a point estimate,

argmax
θ

N∏
i=1

ℓ(θ|xi) (2.1)

or Bayesian inference, which relies on the posterior distribution,

p(θ|{xi}N
i=1) ∝

N∏
i=1

ℓ(θ|xi)π(θ) (2.2)

all rest on the likelihood function in their computations. Here, {xi}N
i=1 is a set of data-points

assumed to be independent samples and π(θ) refers to some prior distribution over the parameters θ.
It is common to not have access to the likelihood function directly but have easy access to a data
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simulator, motivating Likelihood Free Inference (LFI) methods (Tavaré et al., 1997; Sisson, Fan, and
M. Beaumont, 2018). The Bayesian variant of LFI is traditionally encountered under the acronym
ABC for Approximate Bayesian Computation (Sisson, Fan, and M. Beaumont, 2018), alternatively
also as Simulation Based Inference (SBI) (Cranmer, Brehmer, and Louppe, 2020). These methods
all assume access only to a data simulator and devise parameter inference algorithms for this context.
ABC algorithms have been successfully applied in a variety of scientific disciplines, including biology
(Wood, 2010; M. A. Beaumont, 2010), cognitive science (Turner and Van Zandt, 2012; Turner and
Van Zandt, 2014; Turner and Sederberg, 2014; Turner and Van Zandt, 2018) and astronomy (Schafer
and Freeman, 2012; Ishida et al., 2015). The emergence of accessible software packages for the R
and Python programming languages (Michael U Gutmann and Corander, 2016; Lintusaari et al.,
2018; Ishida et al., 2015; Alsing et al., 2019; Wiecki, Sofer, and Frank, 2013; Salvatier, Wiecki,
and Fonnesbeck, 2016) makes an increasingly large subset of cutting edge algorithms available to
non-experts.

The aim of this chapter is to provide a comprehensive overview of approaches towards LFI, with
an eye towards applications in computational cognitive and neuroscience, specifically to experimental
data from arbitrarily complex experimental designs. I focus primarily on methods that facilitate
Bayesian inference, however some of the presentation is applicable for frequentist inference as well.
Moreover, I emphasize a modern machine learning and especially deep learning point of view towards
LFI which is currently gaining traction and will likely provide state of the art methods for some time
to come.

In section 2.2 I begin with a set of motivating examples from the computational cognitive science
literature. I refer back to these examples when convenient for illustration in later sections. Section 2.3
provides a short discussion of general approaches to approximate inference procedures, to characterize
LFI in this territory. Section 2.4 provides a short history of traditional ABC approaches, highlighting
the different components, and strengths and weaknesses of respective algorithms. This sets the stage
for a discussion of modern deep learning based approaches to ABC in section 2.5. This section gives a
thorough overview of the state of the art. Section 3.6 uses the preceding developments of techniques,
for a full discussion of respective strengths and weaknesses. I moreover develop guidelines for the
application of algorithms, depending on the model / problem structure. Section 2.7 gives a short
survey on the existing software landscape dedicated to LFI. Section 2.8 closes with a short conclusion
and some remarks on limitations of this review.

2.2 LFI: Motivating example from Computational Cognitive
Science

As a motivating example from computational cognitive science I will look at the class of sequential
sampling models. These serve as a good example, for two reasons. First, the widely applied simpler
versions of these models such as the basic drift diffusion models (e.g. Ratcliff and McKoon, 2008) in
fact do provide an analytical likelihood function (Navarro and Fuss, 2009), which drives their wide
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adoption as a function of convenience. However simultaneously well motivated but likelihood free
alternatives (Cisek, Puskas, and El-Murr, 2009; Palestro, Weichart, et al., 2018; Krajbich, Lu, et al.,
2012) (although see Srivastava et al., 2017 for attempts at deriving analytic solutions for a class
of such models) tend to be ignored by the experimental community. Second, extensions of basic
diffusion models serve as an abstraction link towards neural level models (O’Connell et al., 2018).
Such models tend to not be easily estimable due to their complexity, however produce higher level
computational summaries which in turn may be modeled with the help of extended drift diffusion
models.

The basic drift diffusion model (DDM) (Ratcliff, 1978) is prevalently used since the 1970s to
jointly account for reaction time and choice data in a variety of 2 alternative forced choice (2AFC)
tasks (see Figure 2.4. According to this model, decisions are the result of an abstract particle crossing
an evidence threshold, after a process of stochastic evidence accumulation, during which perceptual
information is integrated. The original formulation of this model considers the evidence threshold
fixed over time, and the evidence accumulation process is instantiated as a Gaussian random walk
which terminates once it surpasses said threshold. The sign of the random walk position at the point
of its magnitude reaching the threshold, signifies the respective choice taken. The reaction time is
considered the time-point of threshold crossing. Of theoretical appeal this model instantiates what is
known as the sequential probability ratio test (SPRT) (Wald and Wolfowitz, 1948). Interpreting
the level of the evidence threshold as the requested power of a statistical test and the choice as the
acceptance / rejection of a hypothesis for which discretely sampled observations provide stochastic
evidence, this test minimizes the amount of samples needed for a decision. Another way to describe
it is that the SPRT tracks the likelihood ratio between two hypothesis via sequential sampling. For a
given likelihood ratio threshold, the test minimizes the average number of samples needed to take a
decision. While not discussed in further detail here, I note that this paradigm has generalizations to
multi-alternative choice problems with correspondingly named Multihypothesis Sequential Probability
Ratio Tests (MSPRTs) (Draglia, Tartakovsky, and Veeravalli, 1999; Dragalin, Tartakovsky, and
Veeravalli, 2000).

Considering the perceptual data deriving from an experiment stimulus (canonically a trial in a
dot-motion task paradigm) as if providing evidence continuously in time, the evidence accumulation
process assumed under the DDM is then usually defined as the following stochastic differential
equation (SDE),

dXτ+t = v dt + dWt, Xτ = w (2.3)

where X represents the particle in our discussion. The basic DDM then includes as parameters
a starting point w (capturing potential response biases or priors), an evidence drift v (capturing
the perceptual or other evidence accumulated) and a non-decision time τ (capturing the time for
perceptual encoding and motor output). Lastly completing the model we have a parameter a

representing the evidence threshold. A choice is then made at a timepoint t if X either crosses a, or
falls below 0. Hence, the parameter vector for the DDM is then θ = (v, a, w, τ).
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Figure 2.4. Graphical illustration of the basic DDM. Boundary crossings of the red particles
(illustrated via the red stars)are treated as choice / reaction time pairs. The black histograms provide
example distributions for both choices (up and down). The model’s four basic parameters are the
starting point (z), which determines some a priori bias in the decision process, a non-decision time
(ndt) which captures an initial delay in the decision process, the drift (v) which determines a constant
underlying rate of evidence over time and the boundary separation or criterion (a) which determines
the amount of evidence necessary for a decision.

The likelihood ℓc(v, a, z, τ |t) of observing a choice / reaction-time pair {t, c}, assuming t ∈ R+,
and c ∈ {−1, 1} is traditionally represented as an infinite series (W. and V., 1968),

ℓc(v, a, z, τ |t) = ℓ(ṽc, ã, z̃c|t̃) =


π
ã2 exp

(
−ṽcãz̃c − ṽ2

c t
2

) ∑∞
i=1 k exp

(
−k2π2t

2ã2

)
sin(kπz̃c) if t̃ ≥ 0

0 if t̃ < 0
(2.4)

where,

t̃ = t− τ

ṽc = cv

ã = 2a

z̃c =

 w
2a if c = 1

1− w
2a if c = −1

Fast algorithms to evaluate this likelihood, based on intelligent truncation, exist (Navarro and Fuss,
2009; Foster and Singmann, 2021). The model is moreover easy to simulate via the Euler-Maruyama
method, which suggests discretizing in time into timesteps ∆t, setting Xτ = w, and then following,

Xτ+i∆t = Xτ+(i−1)∆t + v∆t +
√

∆t ∗ N (0, 1) (2.5)
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The DDM allows relatively convenient standard likelihood based statistical analysis such as
hierarchical bayesian modeling, including the incorporation of complex experiment designs and
trial-by-trial regressions on parameters(Vandekerckhove, Tuerlinckx, and M. D. Lee, 2011; Wiecki,
Sofer, and Frank, 2013).

Over time however more elaborate versions of the DDM were proposed, which increased the
flexibility of the model. The elaborations were motivated on theoretical grounds (Cisek, Puskas, and
El-Murr, 2009; Usher and McClelland, 2001; Wieschen, A. Voss, and S. Radev, 2020; Krajbich, Lu,
et al., 2012), but also by more practical considerations such as creating variations which may account
for more flexible experimental paradigms (prominent examples include the increase of the number of
choice options, or varying the magnitude of the evidence signal within a given trial).

Prominent examples of such models include the full-DDM, which treats τ , w and v as random
variables (Ratcliff and McKoon, 2008), the attentional DDM (aDDM) (Krajbich, Lu, et al., 2012)
which includes attention as a modulator of the evidence accumulation process, the Leaky Competing
Accumulator (LCA) model, which includes particle position dependent inhibition and excitation
(Usher and McClelland, 2001), the urgency gating model (Cisek, Puskas, and El-Murr, 2009) as well
as other models that allow for variations in the decision threshold which considers accuracy trade-offs
over time (most commonly considering the decision bounds to collapse over time to eventually force a
decision), or models that allow the drift to change over time due to delayed onset of alternative sources
of evidence. Recently (Wieschen, A. Voss, and S. Radev, 2020) suggested evidence accumulation
models which can be characterized as Levy Flights. All of the proposed models can be extended to
model choice processes over N > 2 choice options. The umbrella term sequential sampling models
(SSMs) is widely used to refer to the resulting class of models.

We can distinguish these models according to the difficulty of obtaining (approximate) likelihoods.
Figure 2.5 (Fengler et al., 2020) provides an overview of this difficulty landscape with a couple of
examples. As a result of what is illustrated in Figure 2.5, the simple DDM and full-DDM models do
possess a supporting infrastructure of software libraries in the programming languages R, Python
and Matlab, which aids their broad application to data, while lack of such support can be observed
for more complicated models, especially concerning Bayesian inference. This inevitably has hindered
their application to experimental data even if they are theoretically just as, if not more, suitable for
a given experimental paradigm / dataset. While the support system grows, a notable example being
the recent appearance of the Python package pyDDM (Shinn, Lam, and J. D. Murray, 2020), it does
not yet cover many of the models listed above.

A striking example of how small changes in the model formulation, which demand only trivial
changes to the simulator code, result in vastly different demands from the inference machine, is the
contrast between the DDM and the Levy Flight models illustrated in Figure 2.6.

There moreover exist other models which attempt to simplify the DDM for the purpose of easing
the statistical analysis, while maintaining what are considered crucial characteristics of the model.
Notable examples include the linear ballistic accumulator model (LBA), out of which naturally grew
the attentional LBA (aLBA) (Evans, Trueblood, and Holmes, 2020) and the EZ diffusion model
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Figure 2.5. Systematically varying aspects of the SSMs gives us a range of relevant model
formulations. The resulting models can be divided into four classes according to the difficulty they
present with likelihood evaluations. I consider the simple DDM in the analytical likelihood (solid
line) category, although strictly speaking, as discussed in the main text, the likelihood still demands
an approximation algorithm. This algorithm is however sufficiently fast to not consider it a major
computational bottleneck. The Full-DDM model demands numerical quadrature (dashed line) for
likelihood evaluation, which integrates over variability parameters. This can easily inflated the cost
of likelihood evaluation by two orders of magnitude. For some models, likelihood approximations
have been derived via the Fokker-Planck equations (dotted-dashed lined) which similarly incurs
non-trivial evalutation cost. Last, for some models no approximations based on analytical methods
exist and one needs to resort to computationally expensive simulations to get likelihood estimates
(dotted line).

(Wagenmakers, Van der Maas, and Grasman, 2007). The existence of these models is in large part
motivated by the computational burden that derives even from the estimation of the standard DDM
model, which is orders of magnitude less than what is demanded for Bayesian inference performed on
the models that lack a likelihood function to begin with. The need for such reduced form models
serves as one demonstration of the importance of smart methods to minimize the computational
burden of the more complex original models.

We are concerned with the following properties of the resulting SSMs.

1. Simulating any of these models using the Euler-Maruyama method is neither conceptually not
implementation-wise significantly harder than simulating the simple DDM. It may however be
costlier.

2. The derivation of analytical likelihood functions is either unresolved or requires highly advanced
mathematical expertise to attempt, or if resolved may lead to computations which are as
expensive as simply executing simulations from the model.

3. The separate models can be characterized as varying building blocks of an underlying basic
SDE, further combination of which may lead to other meaningful SSMs, again with potentially
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very hard to crack problems regarding likelihood derivations. This notwithstanding, theoretical
motivation for such models may ask for their testing against experimental data.

Figure 2.6. Graphical displays illustrating the differences in trajectories between the DDM and
Levy Flighy models. The only difference between the illustrated models is the noise process. On
the left, the DDM model is driven by Gaussian noise, whereas on the right the Levy Flight model is
driven by an alpha-stable distribution (in this case with parameter α = 1, which implies a Cauchy
distributed noise process). The difference in the observed trajectories shown in blue is stark. The
Cauchy noise process leads to much larger instantaneous shifts in the particle location. Simulating
either process is equally trivial using the Euler-Maruyama method, however Bayesian inference is
rendered much harder for the Levy Flight model, because of the missing likelihood function.

The rest of this chapter deals with methods designed to help us with posterior inference of models
such as the Levy Flight Model. Using SSMs as an example model class, this section hopefully
motivated why such methods generally form an important contribution by enabling experimenters to
test their data against a larger variety of theoretically important generative models. The implications
of the following however are in no way strictly bound to SSMs.

2.3 Approximate Inference at large

2.3.1 Broad Classes of Likelihood Free Inference Algorithms

In an attempt to clearly delineate the scope of this review, I draw a distinction between,

1. Traditional optimization based approximate inference with access to analytic likelihood functions
(or analytic approximations to likelihood functions).

2. Traditional approaches to Likelihood Free Inference (LFI-ABC)

3. Intermediate approaches with larger emphasis on machine learning tools (LFI-ML)
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Figure 2.7. Overview of methods under discussion in this review. The discussion will focus mostly
on likelihood free methods (left side of the tree), however approximate inference in general includes
powerful optimization based methods to perform posterior inference in models where posteriors are
complex but access to likelihood functions is granted (right side of the tree).

4. Modern approaches to Likelihood Free Inference, which apply deep learning methods to base
LFI algorithms on flexible classifiers and density estimators (LFI-NN)

The main focus of this chapter will be on methods falling under point 4, I however thoroughly
motivate these via a proper introduction of methods falling under point 2. While not a main focus, it
needs to be acknowledged that there exist a multitude of algorithms which fall somewhere in between
LFI-ABC and LFI-NN, and discuss these under as LFI-ML methods below as well. These algorithms
may sometimes be preferred over the LFI-NN methods I discuss more deeply, however tend not to
offer additional capabilities. These moreover generally tend not to be suitable for global amortization
strategies, which I detail and emphasize as important for applications in the following. I quickly
discuss the most widespread methods under point 1 and point 3 here, so that discernment of the
differences and similarities of these broad classes of methods can be aided.

The legacy of traditional optimization based approximate inference is largely represented by two
classes of commonly applied algorithms today. Variational Inference (VI) algorithms (Jordan et al.,
1999; D. M. Blei, Kucukelbir, and McAuliffe, 2017) , and Expectation Propagation (EP) algorithms
(T. P. Minka, 2013). Strictly speaking both methods are two different kinds of variational algorithms,
as in they both attempt to solve the problem of distribution inference via optimization, however
naming convention has allocated the labeling as presented. These methods are distinct from the
ones I stress in the following sections in that they do generally make use of analytic likelihoods in
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their computations. Their origin does not stem from the problem of Likelihood Free Inference, but
rather from a motivation to solve complex posterior estimation problems by approximation to reduce
otherwise prohibitive computational demands.

Both methods are designed to approximate a target distribution, commonly denoted as π(θ), by
finding the closest matching distribution q∗(.) ∈ Q, where Q is a tractable class of distributions.
VI defines,

q∗
V I = argmax

q∈Q
KL(q||π) (2.6)

whereas EP defines,

q∗
EP = argmax

q∈Q
KL(π||q) (2.7)

This subtle seeming difference induces different algorithms for finding q∗ and differences in the respec-
tive properties of q∗

EP , q∗
V I relative to the true target distribution π(θ) (B. Wang and Titterington,

2005; T. Minka et al., 2005; Barthelmé and Chopin, 2011).
For purposes of the this review, I focus on the following conceptual principle implicit in both

traditional VI and EP algorithms. Inference is turned tractable by a priori simplifying the posterior
to belong to a class of distributions that can be handled. This imposes concerns with respect to the
calibration of such methods for scenarios where rigorous calibration of statistical methods is crucial
(Talts et al., 2018). Related to the discussion of LFI-ABC more subtleties will emerge, however, put
simply, this as an additional mode of failure for inference calibration beyond those discussed in the
following sections. Consequently proposed applications have to assure that posterior quality is not
unduly compromised because of the simplifying assumptions embedded in VI and EP.

Extensions to VI algorithms have been developed (Ranganath, Tran, and D. Blei, 2016; Tran,
Ranganath, and D. M. Blei, 2017; Sobolev and Vetrov, 2019), to incorporate increasingly complex
model structures, to make scalable the optimization alrgorithms to large datasets, and notably to
extend into the realm of Likelihood Free Inference. Extensions of both approaches can be considered
as active areas of research. The connection between Variational Inference and Deep Neural Networks
(DNNs), made operational through the popularization of what is now commonly known as the
reparameterization trick (Diederik P Kingma, Salimans, and Welling, 2015; Fu and Hu, 1995; Fu,
2008) contributes to the continued development of approaches that advance the capacities of VI.

As we will see, modern approaches to ABC implicitly rely on optimization of KL-divergences,
which we make precise in section 2.5. At this point I emphasize that the lack of further discussion of
VI and EP methods in the following is not motivated by an adversarial attitude towards the future of
these approaches, but instead by a desire to keep the scope of this review focused towards currently
dominant, and at least equally promising alternatives. I stress that implied synergies abound and in
chapter 5 I will in fact investigate these synergies for the method proposed in chapter 3.

For completeness I shortly discuss LFI-ML approaches. Broadly these apply various machine
learning techniques to attack both likelihoood estimation and posterior inference. A prominent
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method bases posterior inference on random forests (Raynal et al., 2019), however focuses on single
parameter estimation. Another widely used machine learning technique is the Gaussian Process
(GP) (Rasmussen, 2003), which can be powerful in the LFI setting serving as an efficient guide for
the sequential choice of simulation parameters (Wilkinson, 2014; Meeds and Welling, 2014; Acerbi,
2020; Järvenpää, Michael U Gutmann, Vehtari, et al., 2021). This can be made dependent on
uncertainty estimates available directly from the GP via active learning (Acerbi, 2019; Järvenpää,
Michael U Gutmann, Pleska, et al., 2019). The repeated estimation of Gaussian Process regressions
to guide simulations however, can become costly when the number of simulated parameters reaches
Nsim > 2000. This makes such methods hard to apply when global amortization is the goal (to be
explained later). Nevertheless, the guiding principles underlying LFI-ML methods are mirrored in
LFI-NN approaches, including the desire for sequentially efficient choices of simulation parameters.
To the best of my knowledge, hardly any studies that directly compare the performance of LFI-ML
methods with LFI-NN methods exist, which generally makes it hard to strictly advocate for one or
the other class of approaches in applications spheres were both are suitable. A detailed study of the
computational costs incurred in such situations may be desirable, however I am not aware of such
potentially conclusive work having been undertaken yet.

However, as mentioned at the start of this section, for the purposes of this review I consider these
techniques predecessors to the generally more powerful Neural Network based approaches which will
be discussed in depth. The characterization as predecessors is inaccurate from the perspective of
strict chronology since research on these approaches is still underway, but I hope to make clear what
motivates my classification. It is moreover strictly speaking inaccurate to characterize LFI-ABC
categorically as less powerful than LFI-NN approaches since I can not completely rule out application
scenarios which may make LFI-ABC preferable.

It is worth mentioning one additional emerging branch of LFI methods, which rests on a slight
difference in viewpoint. The starting point here is to realize that many simulation models can be
characterized as transformations of random variables to begin with, specifically for model M we
may have fM(θ, ϵ), ϵ ∼ D, where D represents some noise distribution. This viewpoint can then
be exploited for LFI. It may lead to a representation of the simulator which is differentiable (Tran,
Ranganath, and D. M. Blei, 2017), or it may help with making certain a prior intractable likelihood
computations tractable by accessing simulator internals (Brehmer et al., 2020). These approaches are
potentially very powerful, just as LFI-ML methods, if applied suitably. I will forgo further discussion
for the sake of keeping this review focused on methods that are generally applicable, especially for
amortization purposes.

2.3.2 Computational Strategies

An additional distinction in kind between LFI approaches is worth mentioning at this point. Apart
from specific sampling algorithms and modeling tools, one may define three separate computational
strategies (see 2.8) for LFI methods, of which most algorithms I discuss admit more than one.
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Figure 2.8. Overview of computation strategies and their connection to the three broad categories
of approximate LFI methods under discussion in this chapter. The main focus in this chapter are
LFI-ABC methods to contextualize the history of ideas, and LFI-NN methods representing the
modern approaches to LFI.

1. Online Simulation

2. Local Amortization

3. Global Amortization

I refer to a strategy that relies on model simulations at the point of inference as a online simulation
strategy. Local amortization I consider a strategy that incurs some upfront simulation cost to make
available cheap inference (simulation free) for a particular observed dataset. Lastly a strategy is
referred to as global amortization if it incurs such upfront simulation cost with the ambition to make
cheap inference available across a large variety of datasets.

The discussion will emphasize the importance of global amortization as a valuable strategy for
enabling cheap inference on complex likelihood free models by the broader research community.

2.4 LFI-ABC

As discussed, traditional ABC methods (Sisson, Fan, and M. Beaumont, 2018) assume access to a
parametrized simulator model M(θ) where θ ∈ Θ is a vector of parameters, without explicit access
to a likelihood function. For any given dataset xobs we are generally interested in approximating
p(θ|xobs). In this section I attempt to trace the genealogy of ABC approaches which we, in contrast
to the ideas introduced in 2.5, call traditional.
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2.4.1 The ABC rejection sampler

The most basic ABC algorithm is known as the ABC rejection sampler (Tavaré et al., 1997; Pritchard
et al., 1999). It forms the nucleus of what has since grown into a rather large body of literature and
still a good starting point from which to bootstrap this small conceptual history of ABC methods.

One of the very standard computational probability algorithms to sample from a arbitrary
probability distribution π(θ), is the rejection sampling algorithm.

Algorithm 1: Standard Rejection Sampler
Input: Target distribution: π(θ);

Proposal Distribution: g(θ);
Desired Number of samples: N ;

initialization: n = 1, C ≥ maxθ
π(θ)
g(θ) ;

while n ≤ N do
1. Propose θi ∼ g(θ);
2. Set θn = θi with probability π(θi)

Cg(θi) , and increment n;
Else go to 1.

end
Result: Samples: θ1, ..., θN ∼ π(θ)

For purposes of our discussion we specialize the rejection sampler a little further to capture directly
the spirit of posterior inference. Assume that π(θ) is our posterior p(θ|xobs) ∝ p(xobs|θ)πprior(θ) and
g(θ) = πprior. This leaves us with,

Algorithm 2: Prior / Posterior Rejection Sampler
Input: Target distribution: p(xobs|θ)πprior(θ);

Proposal Distribution: πprior(θ);
Desired Number of samples: N ;

initialization: n = 1;
while n ≤ N do

1. Propose θi ∼ π(θ);
2. Set θn = θi with probability p(xobs|θ), and increment n;
Else go to 1.

end
Result: Samples: θ1, ..., θN ∼ π(θ)

The major realization is that, while we cannot compute p(xobs|θ) directly, we can in fact treat it as a
bernoulli event and therefore implicitly access this probability. Since we have access to the simulator
M(θ), we can simulate x ∼M(θ) and accept samples only when for a given sample x = xobs. This
happens exactly with probability p(xobs|θ). This insight leads to the exact rejection ABC sampler
algorithm, our first mechanism to sample from posterior distributions over parameters of a simulator
model M(θ) in the category LFI-ABC, and the origin of an immense surge of research towards more
general and efficient such samplers.
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Algorithm 3: Exact ABC rejection sampler
Input: Dataset: xobs;

Simulator: M(θ);
Proposal Distribution: πprior(θ);
Desired Number of samples: N ;

initialization: n = 1;
while n ≤ N do

1. Propose θi ∼ π(θ);
2. Sample xi ∼M(θi), and increment n;
if xi = xobs then

θn = θi;
end

end
Result: Samples: θ1, ..., θN ∼ π(θ)

While this sampler is exact and works in principle, constraints prevent it from being broadly useful
for practical applications. In fact the probability of generating xobs exactly may be arbitrarily low
even under the true model with the correct parameter vector.

Two elementary examples illustrate this point and suggest the two main levels of approximation
usually involved in ABC computation. First, if the output variables x ∼M(θ) are continuous the
probability of generating any particular observation xobs is by definition 0, even under the true model.
To account for this, instead of asking for x = xobs we can instead ask for ||x− xobs|| ≤ ϵ, where ||.||
defines some norm with which we can measure the distance between vectors x and xobs and ϵ serves
as a tolerance hyperparameter.

Naively applying this approximation by exchanging the x = xobs condition in Algorithm 3 for
||x− xobs|| ≤ ϵ, let’s us sample not from the exact, but from an approximate posterior,

pϵ
ABC(θ|xobs) ∝

∫ 1
V ol(Bϵ(x)) I(||x− xobs|| ≤ ϵ)p(x|θ)π(θ) dx (2.8)

where ϵ serves to adjust the degree of approximation. Now further refining the approximation by
using a smoothing kernel Kh(||.||) instead of the hard binary cut-off imposed by I(||x− xobs||, leaves
us with the the ABC approximation to the posterior p(θ|xobs),

ph
ABC(θ|xobs) ∝

∫
Kh(||x− xobs||)p(x|θ)π(θ) dx (2.9)

where now the so-called bandwidth parameter h of the smoothing Kernel adjusts the degree of
approximation.

By the basic law of large numbers, we can rewrite,
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ph
ABC(θ|xobs) ∝

∫
Kh(||x− xobs||)p(x|θ)π(θ) dx (2.10)

∝ lim
N→∞

1
N

N∑
i=1

Kh(||xn − xobs||)π(θ), xi ∼M(θ) (2.11)

We can now translate this discussion into the the pivotal ABC rejection sampler.
Algorithm 4: ABC Rejection Sampler

Input: Dataset: xobs;
Simulator to generate: x ∼ p(x|θ);
Proposal Distribution: πprior(θ);
Smoothing Kernel: Kh(||.||);
Desired Number of samples: N ;

initialization; n = 1, K = Kh(0);
while n ≤ N do

1. Propose θi ∼ g(θ);
2. Simulate xi ∼M(θi);
3. Set θn = θi with probability Kh(||xi−xobs||)

K , and increment n;
end
Result: Samples: θ1, ..., θN ∼ ph(θ|xobs)
This sampler is pivotal from a conceptual viewpoint. It provides an avenue towards Bayesian

inference over parameters for any arbitrary simulation model M, a conceptual breakthrough that
spurred enormous amounts of methodological research. The rest of the discussion now focuses on
how to use this conceptual breakthrough and make it in fact operational for large array of real world
applications.

The ABC Rejection Sampler as proposed has one severe shortcoming. In realistic scenarios,
the sample acceptance probabilities tend to be so low that computational cost is unreasonably
burdensome for any but trivial applications. For a simple illustration of how acceptance probabilities
might drop to minuscule levels consider a sequence of bernoulli trials ( a sequence of heads or tails
from repeated fair coin flips) of length 100, xobs = {1, 0, ...., 0}. We now use a bernoulli simulator
and apply the ABC rejection sampler. To accept a sample from the simulator at all, we need to
match our sequence xobs exactly. Hence even if we simulate with p = 0.5 (the ground truth since
our coin was fair to begin with), we have an approximate chance on the order of 2−100 to match our
original sequence exactly. This simple coin tossing example suffices to render application of ABC
rejection sampling infeasible.

The traditional developments to remedy this fact can be roughly split into two categories, both
of which work in tandem to improve on the trade-off between computational burden and degree of
approximation,

1. Choice of sampling methodology

2. Dimensionality reduction of x to stabilize distance computations ||x− xobs||
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2.4.2 Choice of sampler

We discuss first the choice of sampler, bypassing for now the acknowledged instability of Kh(||x−xobs||.
Two basic streams of advancement can be identified. First, the application of Markov Chain Monte
Carlo samplers to LFI (Marjoram et al., 2003), including advanced, MCMC based, samplers such as
Hamiltonian Monte Carlo (Meeds, Leenders, and Welling, 2015).

The basic transition step for such an ABC-MCMC sampler can be described as,
Algorithm 5: ABC-MCMC Algorithm

Input: Initial Parameter: θ0;
Simulator: M;
Prior distribution: πprior(θ);
Proposal Distribution: q(θ′ |θ∗);
Smoothing Kernel: Kh(||.||);
Desired Number of samples: N ;

initialization; n = 1;
while n ≤ N do

1. Propose θn ∼ q(θ|θn−1);
2. Generate xn ∼ p(x|θn);
3. Calculate acceptance probability: α = min

(
1,

Kh(||xn−xobs||)πprior(θn)q(θn|θn−1)
Kh(||xn−1−xobs||)πprior(θn−1)q(θn−1|θn)

)
;

4. Accept θn with probability α. Else set θn = θn−1. Increment n;
end
Result: Samples: θ1, ..., θN ∼ ph

ABC(θ|xobs)
where the acceptance probability α so defined ensures the detailed balance property Metropolis
et al., 1953; Hastings, 1970. For large enough N , this sampler will therefore successfully sample
from the target distribution ph

ABC(θ|xobs, however general shortcomings endemic to Markov Chain
Monte Carlo methods, such as widely acknowledged difficulties to sample from multi-modal target
distributions remain.

The second stream of sampling techniques employed for ABC methods grows out of basic
importance sampling. Importance sampling is based on the following basic identity,

∫
f(θ) dθ =

∫
f(θ)
g(θ) g(θ) dθ = lim

N→∞

1
N

N∑
i=1

f(θi)
g(θi)

, θ ∼ g (2.12)

where f(θ) is our intractable target distribution from which we would like to sample and g(θ) is a
proposal distribution from which we can easily draw samples. The re-normalized importance weights,

wi =
f(θi)
g(θi)∑N

i=1
f(θi)
g(θi)

are used as the basis for sampling from f(θ). In our problems, f(θ) = ph
ABC(θ|xobs),

and the importance weights take the form wi
ABC ∝

Kh(||xi−xobs||)πprior(θ)
g(θ) .

Without delving into further details of importance samplers and related techniques, I instead note
the guiding principles that lead the improvements. In common with rejection samplers, the efficiency
of importance sampling techniques is strongly dependent on a good choice of the proposal distribution
g(θ). The closer g(θ) is to the target, the higher the efficiency of the sampler. For rejection samplers
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this efficiency is measured using the rejection rate of the sampler, while for importance sampling the
quality of g(θ) is usually tracked using the effective sample size ESS =

(
1∑

n=1
w2

i

)
, 1 ≤ ESS ≤ N .

(J. S. Liu, Chen, and W. H. Wong, 1998; J. S. Liu, Chen, and Logvinenko, 2001). Sophisticated
importance sampling techniques, such as population monte carlo (PMC) (Cappé et al., 2004),
sequential monte carlo (SMC) (Sisson, Fan, and Tanaka, 2007), sequential importance sampling
(SIS) (Neal, 2001) tend to find smart ways to gradually adjust g(θ) towards f(θ). Note that while
importance sampling can be an extremely successfull (efficient) method to sampling from distributions
of low to moderate dimensionality, endemic to the method is a limitation in overcoming the curse of
dimensionality. Importance sampling is therefore not advisable in high dimensions, which damages
applicability for higher dimensional models as well as parameter inflated inference problems such as
in hierarchical models.

Both likelihood free MCMC and Importance sampling offer great improvements over the basic
ABC rejection sampling.

2.4.3 Dimensionality Reduction: Summary Statistics

While the the choice of sampling technique does matter, a basic shortcoming embedded in all
approaches discussed thus far is the instability of distance computations in high dimensions. This is a
common problem for approaches in machine learning and directly related to the curse of dimensionality
(Friedman, Hastie, and Tibshirani, 2001). The problem faced by ABC methods lies in the inheritance
of this phenomenon concerning all computations involving the smoothing kernel Kh(||x− xobs||).

To overcome this, in general, traditional ABC methods rely on lower dimensional summary
statistics which substitute for the potentially high-dimensional dataset (M. A. Beaumont, Zhang,
and Balding, 2002). Instead of the data x, we can base our computations on the summary statistics
s, with dim(x) >> dim(s), to stabilize the distance metrics.

While the curse of dimensionality is addressed, the choice of summary statistics now needs to be
dealt with. The guiding principle in the search for summary statistics is the following: We wish to
minimize the dim(s), while maximizing the information s carries about it’s underlying parameters.

We will discuss some theoretical background on the notion of ’good’ summary statistics, and
broadly circumscribe the landscape of traditional ABC approaches to finding summary statistics.
In the statistical literature we can identify what one may call a gold standard for what constitutes
a good summary statistic. This gold standard is represented by the notion of a minimal sufficient
statistics.

Definition 2.4.1 (Sufficient Statistic). Given a parametric model M(θ), θ ∈ Θ, a statistic s(x)
is sufficient for the parameter θ, given some dataset x ∼ M(θ) if the conditional probability of
p(x|s(x)) is independent of θ.

Colloquially, a sufficient statistic is a function of the data that captures all information about the
data generating parameters of a given modelM. Even more straightforwardly, we lose no information
about the parameters θ, if instead of x we perform our computations with s(x).
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Note that for a given model there can be a (possibly infinitely large) set of possible sufficient
statistics S (a trivial sufficient statistic being the data x itself for example). A minimal sufficient
statistic further requests that a given sufficient statistic has the lowest dimensionality amongst all
possible sufficient statistics that can be defined for a given model M.

Somewhat dampening our hopes of achieving this gold standard easily however, the Pitman-
Koopman-Darmois theorem (Pitman, 1936; Koopman, 1936; Darmois, 1935), central to the theory of
statistics, asserts that only if we restrict ourselves to the exponential family of probability distributions
can we find sufficient statistics of dimensionality independent of the number of datapoints in our
dataset x. For example in any of the models in Figure 2.5, we would want to naturally request that
a set of summary statistics needs to be applicable across a range of numbers of trials for a given
experiment. The Pitman-Koopman-Darmois theorem tells us that this hope could be fulfilled only if
the first-passage distributions of those models belong to the exponential family, which is most often
not the case.

ABC methods however are essentially a priori designed to be applicable exactly when we are
not dealing with tractable likelihoods such as may be found in the exponential family. The best we
can hope for, is thus to find what we may call highly informative approximately minimal summary
statistics. I discuss a number of methods designed for this purpose, with focus on the ideas that are
relevant for the deep learning methods developed in section 2.5.

Consider θABC
1 , ..., θABC

n ∼ πh
ABC(θ|s∗

obs), as samples resulting from a given ABC posterior, where
computations are based on the summary statistic vector s∗

obs. The goal is to find s∗, so that inference
performance is maximized. Naturally this entails keeping dim(s∗) as small as possible. Traditional
ABC methods generally start with the assumption that we have access to a number of candidate
summary statistics {s1, ..., sm} on which to base our analysis (a shortcoming which the methods
discussed in section 2.5 lift). Blum et al., 2013, classify and discuss various approaches proposed
in the traditional LFI-ABC literature to carry out this process. For purposes of this discussion,
the crucial aspect of these methods is the lack of mechanism to learn a data to summary mapping.
Section 2.5, highlights how LFI-NN algorithms can incorporate such mappings quite naturally.

2.5 LFI-NN

In recent years the basic principles of LFI have been increasingly cross-pollinated with ideas growing
out of the machine learning literature. Specifically the application of Neural Networks approaches to
all parts of the LFI pipeline have slowly become the dominant paradigm, a field transcending trend,
which can be explained by the flexible nature of Neural Networks as universal function approximators
(Cybenko, 1989; Hornik, Stinchcombe, White, et al., 1989). In this section I will discuss how Neural
Network based approaches have reshaped the LFI literature. I will first point out the basic building
blocks as far as Neural Network architectures are concerned, and relate these to the relevant parts of
LFI. Then I discuss different classes of algorithms which, utilizing these building blocks, attack the
LFI problem in varying ways. I will discuss two fundamental kinds of algorithms: First, algorithms
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that target the posterior distribution and second, algorithms that target the likelihood function.

2.5.1 Basic Building Block: Density Estimators

Many Neural Network based algorithms for LFI rely on density estimation as the main workhorse. In
this section I discuss some of the fundamental ideas behind Neural Network based density estimation,
with focus on two broad classes: Mixture Density Networks (MDN) and Flows.

Mixture density networks

Figure 2.9. Graphical illustration of a Mixture Density Network (MDN). Taken from Vossen, Feron,
and Monti, 2018

MDNs (Bishop, 1994) rest on the following simple idea. Given any Neural Network architecture,
we can turn its output nodes to represent the parameterization of a probabilistic mixture model.
Conceptually the output nodes are split into two pools. One pool of C nodes represents the mixture
probabilities αi, i ∈ {1, .., C}, while the other pool of C ∗ P nodes represent the P − dimensional

parameters θi for each of the component distributions, which we can abstractly denote as D(θi), with
associated densities pD(y|θi).

For features X ∈ X and labels Y ∈ Y, we therefore model the distribution of y given x as,

p(y|x) =
C∑

i=1
αi(x)pD(y|θi(x)) (2.13)

Figure 2.9 illustrates the setup graphically. Naturally the suitable training loss is simply the (log)
likelihood under the probability model.

A common choice for the mixture components, and one which we will encounter in our discussion
of algorithms, are (multivariate) Gaussian distributions, specializing the formulation so that, θi =
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{µi, Σi} and

pDi
(y|θi(x)) = (2π) d

2 |Σ−1
i |

1
2 exp(−1

2(y− µi)T Σ−1
i (y− µi)) (2.14)

where d refers to the dimensionality of y.
The MDN framework is quite general, in principle allowing for mixture distributions with

components from heterogeneous base distributions. Similar to the universal approximation theorem
for Neural Networks in general (Hornik, Stinchcombe, White, et al., 1989; Cybenko, 1989), it holds
true that a Mixture of Gaussians (MoG), given enough components, is a universal approximator in
the space of probability distributions (Goodfellow, Y. Bengio, and Courville, 2016), serving as a
motivation for the application of such MoG formulations. Despite their conceptual appeal, training
MDNs is notoriously difficult due to instability with tendency to mode collapse in high dimensions
(Makansi et al., 2019) and necessitates numerical as well as pre-training related (Hjorth and Nabney,
1999) tricks since the likelihood functions does not easily decompose under the log() transformation
(we are taking a log over a sum) (Kruse, 2020).

As it forms a conceptual part of algorithms discussed in later sections, I describe here a particular
approach to make the training of MDNs (Papamakarios and I. Murray, 2016) more robust. At the
core of this method lies the idea that adding uncertainty over weights, in other words formulating the
MDN as a Bayesian Neural Network (Neal, 2012), will prevent getting stuck in early local modes.

For a given architecture with MDN with network parameters (weights) w, we represent the
parameters as deriving from independent Gaussian distributions. We define the (stochastic) function
that is executed by the MDN as qw(y|x), which defines a likelihood of output vector y, given input
vector x. In other words, we augmented w to {wµ, wσ}, the mean and standard deviation respectively.
We can then write,

w = wµ + wσ ∗ ϵ, ϵ ∼ N (0, I) (2.15)

This defines a distribution over weights q(w) ∼ N (wµ, diag(wσ)). Defining a prior over weights
as π(w) ∼ N (0, τ−1I), we can then train the network using Stochastic Variational Inference (SVI)
(Hoffman, D. M. Blei, et al., 2013) minimizing the following loss with respect to its arguments,

LMDN
SV I (wµ, wσ) = −

N∑
n=1

EMDN
q(w) [qw(yn|xn)] + DKL (q(w)||π(w)) (2.16)

While the standard loss for MDNs,

LMDN
ML (w) = −

N∑
n=1

qw(yn|xn) (2.17)

learns the density estimator qw(yn|xn), via a maximum likelihood criterion, using LSV I optimizes
a variational lower bound (ELBO) (Jordan et al., 1999). One can make the connection between
LSV I(wµ, wσ) and the ELBO precise as,
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q∗ = argmin
q∈Q

DKL(q(w)||p(w|xn, θn)) (2.18)

= −Eq(w) [log(p(xn, θn|w))] + DKL(q(w)||p(w)) (2.19)

= −Eq(w)

[
N∑

i=1
log(p(xi, θi|w))

]
+ DKL(q(w)||p(w)) (2.20)

= −Eq(w)

[
N∑

i=1
log(qw(θi|xi)))

]
+ DKL(q(w)||p(w)) (2.21)

= −
N∑

i=1
Eq(w) [log(qw(θi|xi)))] + DKL(q(w)||p(w)) (2.22)

Flows

The second large class of useful density estimators employed in modern LFI algorithms is the class of
flows (Rezende and Mohamed, 2015).

I will describe the main ideas behind these flow methods, with focus on a few examples and
an eye for distinguishing two main classes of approaches which I will call autoregressive and joint
estimators.

In general flow based methods approach density estimation from the point of view of a trans-
formation of random variables. Starting from an underlying base (or latent) distribution (for our
purposes we stick with the common isotropic unit multivariate Gaussian, π(u) = N (0, I)), a flow is
an invertible, differentiable, transformation (IDT) fw : U → X , where w refers to the transformations
parameters. Commonly fw is composed of a succession of such IDTs so that,

fw(u) = fn,wn
◦ fn−1,wn−1 ◦ ... ◦ f1,w1(u) (2.23)

The idea here is that for an IDT, we can apply the transformations of variables formula from
basic probability, to access the pdf of fw(u). Taking x = fw(u) we have,

p(x) = π(f−1
w (x))

∣∣∣∣det

(
∂f−1

w (x)
∂x

)∣∣∣∣ (2.24)

where,

f−1
w (x) = f−1

1,w1
◦ f−1

2,w2
◦ ... ◦ f−1

n,wn
(x) (2.25)

This is useful because via the inverse mapping we can apply a tractable loss, where otherwise we
would have an intractable likelihood to evaluate. On the other hand, once a mapping is learned, we
can easily sample from x ∼ p(x), by transforming a vector of standard Gaussian variables u.

Specifically, if our problem demands us to learn the density p(x) from samples {x1, .., xN}, via a
flow fw(.), we can now use stochastic gradient descent (SGD) (Robbins and Monro, 1951; Bottou,
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Figure 2.10. This figure illustrates the basic idea behind invertible flow transformations. Adapted
from Dinh, Sohl-Dickstein, and S. Bengio, 2016 and Papamakarios, Nalisnick, et al., 2019

2012) or any of it’s commonly used variants (Diederik P Kingma and Ba, 2014; Ioffe and Szegedy,
2015) to attack the following minimization problem,

w∗ = argmin
w

1
N

N∑
i=1

[
− log(π(f−1

w (xi)))− log
(

det

∣∣∣∣∂f−1
w (xi)
∂x

∣∣∣∣)]
(2.26)

I turn the focus now to specific mappings (or sequences of mappings) f : u→ X . As a general
principle, research efforts has gone into devising maximally expressive such mappings f , while
maintaining computational tractability of the determinant terms in the loss functions. I first consider
a main example of joint estimators, specifically the RNVP approach (Dinh, Sohl-Dickstein, and
S. Bengio, 2016), which extends it’s predecessor algorithm NICE Dinh, Krueger, and Y. Bengio, 2014.

The basic workhorse of RNVPs is the coupling layer. A coupling layer first partitions the D

dimensional vector u into two parts, u1:d and ud+1:D (where d > D
2 ) and then applies,

fi(u) =

x1:d = u1:d

xd+1:D = ud+1:D ⊙ exp(s(u1:d)) + t(u1:d)
(2.27)

where ⊙ signifies element-wise multiplication. This function has inverse,
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f−1
i (x) =

u1:d = x1:d

ud+1:D = (xd+1:D − t(x1:d))⊙ exp(−s(x1:d))
(2.28)

where s(.) and t(.) are arbitrary Neural Networks with appropriate output dimensionality. Now
crucially, by design we then have,

∂f(u)
∂uT

= ∂x
∂uT

=
[

Id 0
∂xd+1:D

∂uT
1:d

diag(exp(s(u1:d))

]
(2.29)

with,

log det

(
∂x

∂uT

)
=

D−d∑
i=1

s(u1:d)i (2.30)

which makes the determinant computation computationally trivial (naively O(n3). Noting that a
permutation is invertible, with determinant 1, we can then construct a Flow by stacking permutation
and coupling layers into a deep network which can be trained using Eq. 2.26 (where w now refers
collectively to the weights of the Neural Networks s and t used in the stacked coupling layers).

Specific tractable layers which can be used as alternatives to or in conjunction with coupling
layers in deep joint flows form an active area of research (Rezende and Mohamed, 2015; Rezende,
Papamakarios, et al., 2020; Huang, Dinh, and Courville, 2020a; Nielsen et al., 2020; Sorrenson, Rother,
and Köthe, 2020; Berg et al., 2018; Hoogeboom et al., 2020; Tran, Vafa, et al., 2019), including
continuous versions which are based on a differential equation framework instead of iterative mappings
as described in the example of RNVP Flows (Huang, Dinh, and Courville, 2020b; Dupont, Doucet,
and Teh, 2019).

We now turn to the second branch of Flows, autoregressive flows. The connection between
autoregressive Neural Networks and density estimation has been developed since roughly a decade
(Larochelle and I. Murray, 2011; Uria, I. Murray, and Larochelle, 2013; Durk P Kingma et al., 2016;
Raiko et al., 2014; Huang, Krueger, et al., 2018), however early conceptual roots may be found earlier
(Frey, Hinton, and Dayan, 1996).

We discuss in more detail masked autoregressive flows (MAFs) (Papamakarios, Pavlakou, and
I. Murray, 2017), developed as an extension of the ideas in Germain et al., 2015. The most recent
iteration, dubbed neural spline flows (NSFs) (Durkan, Bekasov, et al., 2019), is available in state-
of-the-art software for Simulation Based Inference (Tejero-Cantero et al., 2020), and builds on the
foundational ideas implicit in MAFs. The details of NSFs however are not conducive to the illustration
of the basic principles here.

A MAF layer i is defined by the following mapping f : U → X .

fi(u)j = uj exp(sj(x1:j−1)) + tj(x1:j−1), j ∈ {1, ..., D} (2.31)

with inverse,
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f−1
i (x)j = (xj − tj(x1:j−1)) exp(−sj(x1:j−1)), j ∈ {1, ..., D} (2.32)

where u ∼ N (0, I)), and sj , tj are in general arbitrary Neural Networks (however in applications
architecturally constrained). Note the major difference to the layers for RNVPs defined above: MAF
layers are autoregressive, in that the jth output, depends on input x1:j−1, whereas no such property
is enforced for RNVP layers. The autoregressive property automatically renders the log determinant
of the Jacobian tractable as the sum over the log diagonal,

log det

(
∂f−1(x)

∂xT

)
= −

D∑
j=1

sj(x1:j−1) (2.33)

Moreover, one may note that layers in MAFs are designed to have xj depend on x1:j−1 whereas RNVP
layers make x depend exclusively on u. Using masking of connections to preserve the autoregressive
property in an otherwise standard feedforward Neural Network (Germain et al., 2015) MAF layers
can compute f−1(x) = u in one forward pass (as RNVP), however sampling x demands D steps of
recursion (Papamakarios, Pavlakou, and I. Murray, 2017).

As with RNVP layers, MAF layers can be stacked to allow for more complex generative models.
More expressive than RNVPs (Papamakarios, Pavlakou, and I. Murray, 2017), MAFs are explicitly
designed to allow fast density evaluation for a new datapoint from the target distribution p(x), but
are slower than RNVPs when the goal is to use them as generative models. This trade-off emerges as
relevant in applications to LFI, however I delay the discussion of this aspect for now.

Autoregressive density estimators as joint density estimators form an active area of research
(Bhattacharyya et al., 2020; Marino et al., 2020; Khemakhem et al., 2020). In general, as flexible
density estimators for intractable probability distributions (implicit models) flows are widely applied
and the development of ever new variations is ongoing (Kobyzev, Prince, and Brubaker, 2020;
Papamakarios, Nalisnick, et al., 2019; J. Liu et al., 2019; Rezende, Papamakarios, et al., 2020;
Durkan, Bekasov, et al., 2019). Papamakarios, Nalisnick, et al., 2019 provide a very detailed review
dedicated to flow based methods with a view towards probabilistic modeling.

2.5.2 Basic Building Block: Ratio Estimators

Ratio estimators re-frame our estimation problem in the context of LFI as a classification task.
Instead of targeting a density we target a likelihood ratio, bringing the idea in connection with
the framework of hypothesis testing (Cranmer, Pavez, and Louppe, 2015). This representation can
be beneficial if our algorithm (specifically the SNRE algorithm detailed later) attempts posterior
inference by learning approximate likelihoods. For a given dataset x, specifying a family of generative
probability models pθ(), θ ∈ Θ and denoting the likelihood of x, given parameter θ, by pθ(x), we
define the likelihood ratio r(.|.) as,

r(x|θ0, θ1) := pθ0(x)
pθ1(x) (2.34)
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We can simulate (as per assumption) x ∼ pθ(x) for any θ ∈ Θ. Now we wish to define a function
(our classifier) dw : RD → [0, 1] that learns to separate samples x ∼ pθ0(x) from samples x ∼ pθ1(x).
It can be shown (under assumption of a prior π(θ0) = π(θ1) = 1

2 ) (Cranmer, Pavez, and Louppe,
2015) that the optimal solution w∗, given dw(.) is expressive enough,

dw∗(x) = p(θ0|x) = p(x|θ0)
p(x|θ0) + p(x|θ1) (2.35)

so that,

r(x|θ0, θ1) = dw∗(x)
1− dw∗(x) (2.36)

This estimator (including extensions and variations) is widely used in LFI (Michael U Gutmann,
Dutta, et al., 2018; Thomas et al., 2020; Brehmer et al., 2020; Rhodes, Xu, and Michael U. Gutmann,
2020), with another prominent application being as the discriminator loss in generative adversarial
networks (GANs) (Goodfellow, Pouget-Abadie, et al., 2014; Uehara et al., 2016; Mohamed and
Lakshminarayanan, 2016).

We focus on an extension by (Hermans, Begy, and Louppe, 2020), that is especially useful
for amortization strategies to LFI. Hermans, Begy, and Louppe, 2020 propose to instead learn
dw(., .) : RDx × RDθ → [0, 1], where dw(., .) attempts to distinguish joint samples (x, θ) ∼ p(x, θ)
from independent samples (x, θ) ∼ p(x)p(θ). Again for an expressive enough dw(., .), the optimal
classifier can be shown to respect

dw∗(x, θ) = p(x, θ)
p(x, θ) + p(x)p(θ) (2.37)

with the corresponding ratio estimator,

dw∗(x, θ)
1− dw∗(x, θ) = p(x, θ)

p(x)p(θ) = p(x|θ)
p(x) = r(x|θ) (2.38)

now estimating the likelihood to evidence ratio, rather than a traditional likelihood ratio.
Hermans, Begy, and Louppe, 2020 show that training under binary cross entropy, where we draw

training samples as triples {(x, θ, θm)i}N
i=1, where (x, θ)i ∼ p(x, θ) and θm

i ∼ p(θ), yields the optimal
solution defined in Eq. 2.37. The loss is then defined as

LRatio(w) =
N∑

i=1
− log(d(xi, θi))− log(1− d(xi, θm

i )) (2.39)

These ratio estimators are a highly flexible building blocks for LFI-NN algorithms, specifically those
designed to focus the learning problem on the likelihood instead of directly on the posterior. Detailed
description of a selection of relevant algorithms follows in the section dedicated to algorithms that
target the likelihood. Figure 2.11 shows how the idea of ratio estimation may be utilized in the context
of MCMC algorithms Metropolis et al., 1953; Hastings, 1970.
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Figure 2.11. This figure illustrates how the ratio estimators may be utilized in an MCMC algorithm
for a downstream task. The corresponding network is set up to use two ratio estimators, so that the
output is a likelihood ratio between ℓ(θt|x) and ℓ(θ′ |x). This likelihood ratio is all that needs to be
evaluated in the context of MCMC algorithms. Taken from Hermans, Begy, and Louppe, 2020.

2.5.3 Basic Building Block: Networks Relevant for Summary Statistics

Discussed previously in the context of traditional ABC methods, summary statistics play an important
role for many of the Neural Network based LFI approaches. Some NN-LFI algorithms implicitly
assume a relatively low-dimensional observed data-vector x, essentially outsourcing the problem of
finding such low-dimensional summaries, before application of the sampling algorithm Papamakarios
and I. Murray, 2016; Papamakarios, Pavlakou, and I. Murray, 2017. Others propose explicitly an
end-to-end trainable pipeline which incorporates a summary statistics network (e.g. S. T. Radev,
Mertens, et al., 2020).

Generally, finding appropriate summary statistics (low dimensional summaries) for high-dimensional
data-vectors is a problem that has attracted attention from the statistics and machine learning
communities in its own right (Friedman, Hastie, and Tibshirani, 2001). One can distinguish between
two approaches. First, finding summary statistics via a target that is relevant for model based
inference. Second, finding data compressions by means divorced from the downstream inference
context.

Concerning the second approach, for purposes of this review I constrain myself to mention that
it is an active research area, with promising approaches based on recent advances in methods for
neural estimation of mutual information criteria (Battiti, 1994; Paninski, 2003; Hjelm et al., 2018;
Belghazi et al., 2018; Chan et al., 2019).

We will now consider in some detail the approach of finding summary statistics for purposes of
model based inference. A simple such method was devised by Jiang et al., 2017.

For a given (likelihood free) probabilistic model pM(x|θ), the authors suggest to learn a mapping
fw : x→ θ, which targets EpM [θ|x] by minimizing the mean squared error,

LRMSE(w) = 1
N

N∑
i=1
||fw(xi)− θi||22 (2.40)
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Under assumption of convergence fw∗(x) = EpM [θ|x]. The authors show that in this case,
the downstream application of an ABC sampler will yield an approximate posterior πϵ

ABC(θ) =
π(θ | ||fw∗(x)− fw∗(xobs)|| < ϵ) which, in the limit ϵ→ 0, respects,

lim
ϵ→0

Eπϵ
ABC

[θ] = Eπ[θ|x = xobs] (2.41)

In other words, using this approach to learn summary statistics targets posteriors which are correct
in their first moment.

Concretely (however not essential for application of the basic principle of this approach), Jiang
et al., 2017 suggest to apply Convolutional Neural Networks (CNNs) (LeCun et al., 1989), which
implicitly allows inputs of variable size to be handled. While this approach was a promising first step,
it suffers from a basic shortcoming. We are constrained to compress our data-set xobs into a fixed
length vector of length dim(θ). In light of the discussion on sufficient statistics earlier, specifically
the Pitman-Koopman-Darmois Theorem, we must immediately doubt sufficiency and moreover the
consistency of posterior behavior across data-set sizes. It seems therefore in general of interest to
allow the embedding dimensionality to be dissociated from dimensionality of the parameter space of
our model M.

This dissociation can be accomplished by separating the loss target from dim(θ). (we note that
the aforementioned methods based on mutual information estimation accomplish this dissociation
too, as a major principal advantage over the approach proposed by Jiang et al., 2017).

Current LFI-NN algorithms, allow for this via an end-to-end differentiable pipeline, which bases
the loss directly on the posterior, so that an intermediate encoding or embedding network is learned
implicitly. This will be discussed more in the respective section on NN-LFI algorithms, however
it matters here insofar as it allows focus on basic properties of summary networks that one may
sensibly want to request, without worrying about the loss function on the summary network directly.

In general, the architecture of summary networks should follow the inherent structure of data
generated by our simulator model M. If M generates time-series data, we may choose a Recurrent
Neural Network (RNN) (Rumelhart, Hinton, and Williams, 1986; Hochreiter and Schmidhuber, 1997)
architecture. An example from neuroscience would be a SDE driven neural firing model, for which
we can observe the firing rate over the course of an experimental trial (K.-F. Wong and X.-J. Wang,
2006). If the model generates 2D structures akin to images, such as e.g. the Ising model (Cipra, 1987;
Kadirvelu, Hayashi, and Nasuto, 2017), a natural choice (as pursued as a toy example in Jiang et al.,
2017) may be Convolutional Neural Networks (CNNs) (LeCun et al., 1989), which are designed to
summarize spatial information (usually for a final classification purpose). If M generates relational
structures (e.g. random graphs), a suitable architecture may be Graph Neural Networks (GNNs)
(Scarselli et al., 2008; Zhou et al., 2018).

A secondary but crucial aspect of data-sets xobs, is that commonly we are not dealing with single
data-points from M, but instead with multiple data-points, which are under M either independent
and identically distributed (i.i.d), or as a related Bayesian notion exchangeable (Aldous, 1985). Single
data-points may be time-series or any of the other data-types mentioned in the previous paragraph,
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however collectively, the data-points act not as a sequence, but as a set. The implication is that over
this set, we desire a network architecture which is permutation invariant. Formally, if we represent
xobs as {xobs,1, ..., xobs,n}, and our summary network as an overall mapping fw : xobs → s ∈ Rdim(S),
where dim(S) is the desired dimension of the summary statistic, then we request that,

f I
w({xobs,1, ..., xobs,n}) = f I

w({xobs,π(1), ..., xobs,π(n)}) (2.42)

for any permutation π(.) of {1, .., n}. The importance of permutation invariance across a variety of
application domains has led to active research into the characterization and development of Neural
Network architecture which embed this principle a priori (Zaheer et al., 2017; Charles R Qi et al.,
2017; Charles Ruizhongtai Qi et al., 2017; J. Lee et al., 2019; Vaswani et al., 2017). A general,
constructive characterization of how to build permutation invariant networks through the perspective
of probabilistic invariances (Kallenberg, 2006), was developed by Bloem-Reddy and Teh, 2020.

The authors suggest to build a permutation invariant Neural Network by stacking a sequence of
equivariant modules, topped by a final invariant module. An module equivariant to permutations,
represented by a function fE

w : x→ y, has the following property,

fE
w ({xobs,π(1), ..., xobs,π(n)}) = {yobs,π(1), ..., yobs,π(n)} (2.43)

Figure 2.12, illustrates the structure of such networks in graphical form. Of importance to us is
the following characterization (we specialize to deterministic functions, however note that the results
of Bloem-Reddy and Teh, 2020 generalize to stochastic modules),

f I(x) = fwI
(

N∑
i=1

ϕwϕ
(xi)), Invariant Module (2.44)

(
fE(x)

)
i

= fwE
(xi, f I(x)), Equivariant Module (2.45)

where fwI
(.), ϕwϕ

(.) and fwE
(.) are Neural Networks. Note that invariant modules demand a

pooling operation before application of fwI
(.), where ϕwϕ

(.), prescribes the embedding dimension.
Moreover, note that the equivariant module is applied dimensions wise.

2.5.4 Algorithms that target the Posterior

State of the art LFI-NN algorithms which target the posterior distribution directly, can be traced
back to a conceptually foundational paper by Papamakarios and I. Murray, 2016, titled: Fast ε-free
Inference of Simulation Models with Bayesian Conditional Density Estimation. Their approach was
later taxonomized as sequential neural posterior estimation (SNPE), and is now embedded in an
arc of improvement from SNPE-A over SNPE-B, to the most current SNPE-C. Since this sequence
of refinements sits firmly on the conceptual foundations laid by SNPE-A, I explain the SNPE-A
approach in some detail.

44



Figure 2.12. The figure provides the schemata on how to construction invariant functions via
iterations (stacking) of equivariant modules, topped by an invariant module. Circles denote random
variables. Blue squares, denote arbitrary functions (possibly with outsourced noise terms η). Red
squares denote arbitrary embedding functions. The ⊕ denotes symmetric pooling operations. Figure
taken from Bloem-Reddy and Teh, 2020.

Papamakarios and I. Murray, 2016 suggest to iteratively learn the posterior p(θ|sobs) in form of a
Gaussian-MDN qMDN

w (θ|x). The iterative (sequential) part to the algorithms lies in the progressive
refinement of the prior distribution π̃i(θ) (at iteration i), towards the posterior true posterior p(θ|sobs)
. The idea is to guide simulations in an attempt to minimize wasted computations, which is achieved
by simulating training data only where it matters (parameters for which the true posterior has mass).
At iteration i we simulate training data according to,

θn ∼ π̃i(θ) , sn ∼M(θ) (2.46)

Training-data so generated, given an expressive enough Gaussian-MDN, the conditional density
estimator qMDN

w,i (θ|s) can then be trained via LSV I or LML as described earlier in the section
dedicated to MDNs. Such a network will then converge to yield (Proposition 1, Papamakarios and
I. Murray, 2016),

qMDN
w,i (θ|s)∝̃ π̃i(θ)

π(θ) p(θ|s) (2.47)

or,

p(θ|s)∝̃ π(θ)
π̃i(θ)qMDN

w,i (θ|s) (2.48)

where π(θ) is the actual prior we would like to apply to the underlying inference problem. Choosing
the true prior to be a Gaussian Mixture Model (or otherwise Uniform), approximation i to the
posterior p(θ) can then be found via analytical computations (a Gaussian conjugate problem in
Bayesian Analysis), by plugging in sobs for s. This yields again a Gaussian mixture as an approximate
posterior and renders sampling trivial.
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The resulting iterative algorithm is now commonly encountered under the acronym SNPE-A. While
conceptually important, and elegant as far as the involved analytical computations are concerned, the
algorithm was subsequently refined (Lueckmann, Goncalves, et al., 2017; Greenberg, Nonnenmacher,
and Macke, 2019) via SNPE-B and SNPE-C to allow for a wider range of distributional shapes and
overcome endogenous numerical problems, which were acknowledged already in Papamakarios and
I. Murray, 2016.

Algorithm 6: SNPE-A
Input: Prior: π̃0;

Simulator: M;
Initialize: qw,1(θ|x) with K components;
Set: i = 1;

while not converged do
for n = 1..N do

Sample θn ∼ π̃i(θ),
Sample xn ∼M(θn)

end
train qw,i(θ|x) with {θ, x}N

i=1;
set π̃i+1(θ)← π(θ)

π̃i(θ) qw,i(θ|sobs);
i = i + 1;
check convergence;;

end
Result: π̃i+1(θ)
With SNPE-B, Lueckmann, Goncalves, et al., 2017 add two innovations to the SNPE-A algorithm,

which respectively increases the efficiency of the training procedure by avoiding training restart
at every iteration and increases modeling flexibility, allowing for more complex priors and density
estimators by avoiding a reliance on full analytical tractability. SNPE-B uses a density estimator
qw(θ|s) (as opposed to SNPE-A, the restriction to MDNs is lifted) to directly represent the posterior
p(θ|s).

Changed is the optimization objective. For iteration (round) r of the the optimization process,
the loss function is defined to be,

LSNP E−B
r (w) = − 1

N

N∑
i=1

π(θi)
π̃r(θi)

log qw(θi|si) + 1
N

DKL (πr(w)||πr−1(w)) (2.49)

which combines the VI loss for MDNs with an importance weighting on the loss of qw(θ|s). The
KL-divergence part allows training to be informed by past rounds, by making the posterior over
weights in round r− 1, the prior over weights in round r. The importance weights adjust the training
loss so that instead of,

qw,i(θ|s)∝̃ π̃i(θ)
π(θ) p(θ|s) (2.50)
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our density estimator is directly proportional to the posterior,

qw,i(θ|s)∝̃p(θ|s) (2.51)

Hence easy sampling from the posterior does not depend on analytic tractability of Eq. 2.50, as in
SNPE-A. The resulting SNPE-B algorithm is

Algorithm 7: SNPE-B
Input: Prior: π̃0;

Simulator: M;
Initialize: qw,1(θ|x) with K components;
Set: i = 1;

while not converged do
for n = 1..N do

Sample θn ∼ π̃(θ);
Sample xn ∼M(θn)

end
continue training qw,i(θ|x) with {θ, x}N

i=1 and LSNP E−B
i (w);

set π̃i+1(θ)← qw,i(θ|sobs);
i = i + 1;
check convergence;;

end
Result: π̃i+1(θ)
These innovations allow for greater flexibility, however the approach was criticized for added

training instability due to the high variability of importance ratios in realistic settings (π̃r(.) can
be arbitrarily different from π(.), Greenberg, Nonnenmacher, and Macke, 2019). This problem can
lead to failure modes. As can be discerned, the final algorithm is only very slightly different from
SNPE-A.

SNPE-C Greenberg, Nonnenmacher, and Macke, 2019, as of this moment part of the state of the
art algorithms for LFI-NN, aims to maintain the flexbility of SNPE-B, while however overcoming
the issues with importance weights. Moreover the authors improve on the cross-rounds training
introduced with SNPE-B.

The authors instead start from the following identity,

p̃(θ|s) = p(θ|s) π̃(θ)
π(θ)

π(s)
π̃(s) (2.52)

and define,

q̃w(θ|s) = qw(θ|s) π̃(θ)
π(θ)

1
Z(s, w) (2.53)

for some density estimator qw(θ, s) and normalization constant, Z(s, w). The idea is to use q̃w(θ|s)
for the loss function,
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LSNP E−C(w) = −
N∑

i=1
log (q̃w(θi|si)) (2.54)

however we train the parameters w of qw(θ|s), which will finally be proportional to p(θ|s).
As Greenberg, Nonnenmacher, and Macke, 2019 concede, we rarely have access to Z(s, w), which

motivates an extension to atomic proposals. Using π̃(θ) = U(Θ) (a uniform distribution over the set
Θ), with {θ1, .., θm} = Θ, where Θ ∼ V for some hyperproposal V, we can define,

q̃w(θ|s) = qw(θ|s)/π(θ)∑
θ′ ∈Θ qw(θ′ |s)/π(θ′) (2.55)

as a discrete distribution for which,

w∗ = argmin
w

EΘ∼V,θ∼U(Θ),s∼p(s|θ)
[
LSNP E−C(w)

]
(2.56)

will yield qw∗(θ|s) = p(θ|s) (Proposition 1 in Greenberg, Nonnenmacher, and Macke, 2019). Connec-
tions have been draw between this procedure and the ratio estimators describes as basic building
blocks(Durkan, I. Murray, and Papamakarios, 2020).

Algorithm 8: SNPE-C
Input: Initialize: qw,1(θ|s) ;

Prior: p(θ) ;
Simulator: M;
sobs ;
N simulations per training round ;
R number of rounds ;
M number |Θ| of atoms ;
Set: c = 0;

for r = 1..R do
for n = 1..N do

increment c ;
sample θc ∼ π̃r(θ) ;
sample sc ∼M(θc)

end
Set up distribution Vr(Θ) :=

(
c

M

)−1
for Θ = {θb1 , .., θbM

}, 1 ≤ b1 ≤ ... ≤ bM ≤ c;
w∗

r = argmin
w

EΘ∼Vr(Θ)
[
LSNP E−C(w)

]
;

π̃r+1(θ) := qw∗,r(θ|sobs) ;
end
Result: qw∗,R(θ|s)
SNPE-C is a highly flexible algorithm, however a weakness remains. The learned posterior

q∗
w(θ|sobs) can leak mass outside of the support of p(θ). Hence, we cannot sample from q∗

w(θ|sobs)
naively, but have to consider a procedure such as rejection sampling, which may incur substantial

48



computational loss if rejection rates are high (possibly exacerbated by the dimensionality of the
original posterior inference problem).

Another recent approach, closely aligned with the lineage of relevant concepts of SNPE, however
with a focus on global amortization of the posterior (across parameter space and relevant dataset sizes)
is BayesFlow (S. T. Radev, Mertens, et al., 2020). This approach provides an end-to-end pipeline
which combines invertible flows with permutation invariant embedding (summary statistic) networks,
amortizing a complete inference scenario. Conditioned on an experimental (or otherwise observed)
dataset, sampling is achieved simply by drawing random samples from the learned conditional flow.
Specifically, the authors use RNVP-Flows (as described earlier), and explicitly build summary statistic
networks according to the guidelines derived from Bloem-Reddy and Teh, 2020. For completeness I
list the resulting algorithm below, and show a graphic schemata in Figure 2.13,

Figure 2.13. Schemata for the BayesFlow algorithm. During the training phase, one jointly trains
a summary statistics network and a invertible conditional flow (ICF) from simulation data. At
inference, one passes the observed dataset (here x0) through the learned summary statistic network
and samples from the inverted ICF, which is conditioned on the respective summary statistic (x̃0).
Figure taken from S. T. Radev, Mertens, et al., 2020
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Algorithm 9: BayesFlow
Input: Initialize: qwF low

(θ|s) (here RNVP), fwSummary
(x) (summary network) ;

prior p(θ) ;
simulator M(θ);
N simulations per training round ;
B Batch size ;
Nmin, Nmax maximum and minimum numbers of observations allowed ;

repeat
Sample current number of observations N ∼ U(Nmin, Nmax);
for b = 1..B do

sample θb ∼ π̃r(θ) ;
for n = 1..N do

sample xb
n ∼M(θb)

end
Compute sb = fwSummary

(xb
1:N ) ;

Compute zb = qwF low
(θb|sb) ;

end
SGD update on (wF low, wSummary) using {θb, sb, zb}1:B

until until convergence to w∗
F low, w∗

Summary;
Result: qw∗,R(θ|s)
BayesFlow is conceptually very closely aligned with the SNPE approaches, the explicit incorpora-

tion of the embedding network not signifying a difference in kind, but simply emphasis. SNPE-C and
SNPE-B in principle allow for joint learning of an embedding network as well. Global amortization
is moreover possible with the SNPE approach as well, again signifying a difference in emphasis
rather than a difference in kind. To use SNPE for global amortization one would simply constrain
training to the equivalent of round 1, and not specialize the proposal prior across rounds (since the
specialization across rounds in conditioned on the observed data).

Both SNPE and BayesFlow allow for post hoc adjustments of prior distributions via e.g. rejection
sampling, however in spirit both approaches aim at learning the posterior distribution for a single
prior / likelihood pair. This focus on the amortization of posteriors allows very fast sampling from
the resulting approximate posterior, however it does incur some implicit costs.

First, the direct focus on posteriors prevents likelihood based model comparison exercises (e.g.
via Bayes Factors) (Kass and Raftery, 1995) to apply directly. Second and more severely, posterior
amortization makes sense for single inference scenarios, which imposes several limitations. If one
deals with experimental datasets, and would like to do inference across a number of experimental
conditions, assuming that a subset of our model parameters are fixed, while others are affected by the
experimental manipulations, then it is necessary to amortize the posterior distribution for every single
experimental design one might wish to consider. Moreover we may want to use hierarchical inference
to pool information about model parameters across subjects. For every number of subjects N , we
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would have to amortize a different posterior. The last examples are especially damning from the
viewpoint of flexible application, since they go hand in hand with an inflation of the dimensionality of
the parameter space. One of the fundamental limitations of both SNPE and Bayesflow is that these
methods are not suited for problems that involve high dimensional ( as a rough guide dim(θ) > 30 )
parameter spaces.

We will discuss the relative shortcomings and benefits of posterior amortization methods and
turn them into practical suggestions for applications in section 3.6. However we keep in mind that
the mentioned shortcomings can be viewed through the lens of problem representation. A different
compartmentalization of the amortization strategy, with a focus on likelihoods, incurs a different set
of trade-offs. I will discuss this strategy next.

2.5.5 Algorithms that target the Likelihood

Instead of focusing the amortization on the posterior distribution, we may focus on amortizing the
likelihood function. The immediate benefit of amortizing likelihood functions lies in the potential
for flexible deployment across inference scenarios. This is an important distinction from posterior
targeting LFI-NN techniques, which I will discuss in more depth in section 3.6.

This section discusses two basic strategies for this approach and discusses some of the strengths and
weaknesses of each. Specifically, I focus on two algorithms which are rooted in the same conceptual
framework as the SNPE algorithms discussed in the previous section. These approaches are somewhat
explicitly built around a Neural Network framework (to adhere to our LFI-NN classification) and are
part of recent benchmarking efforts to inventory the current state of the art (Lueckmann, Boelts,
et al., 2021). A number of other related approaches exist, which may not be based on Neural Networks
as the basic workhorse, however conceptually maintain a close relationship (Michael U Gutmann,
Dutta, et al., 2018; Dinev and Michael U Gutmann, 2018; Thomas et al., 2021).

The first approach I discuss is known as sequential neural likelihood (SNL) (Papamakarios,
Sterratt, and I. Murray, 2019). This follows directly in the footsteps of SNPE, however one uses a
density estimator (either of the ones discusses previously) qw(sobs|θ) to target the likelihood. In the
framework of a SNPE algorithm, only minimal adjustments are needed. Defining, as we have seen
for SNPE, a round-wise prior π̃r(θ), and a corresponding round-wise joint p̃r(θ, s), each round we
can simply minimize,

LSNL(w) = −
N∑

i=1
log(qw(s|θ)), (s, θ)i ∼ p̃r(θ, s) (2.57)

The key difference lies in the how updated priors are defined,

π̃r(θ) ∝ qw,r(s|θ)π(θ) (2.58)

which implies that sampling from π̃r needs to proceed by e.g. MCMC.
Restricting this approach to a single round, as for SNPE algorithms, allows for amortization

independent of sobs. Note that a similar approach to SNL, which focuses (however is not necessarily
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Algorithm 10: SNL
Input: Initialize: qw,1(s|θ);

Prior: π̃1(θ) = π(θ);
Simulator: M;
Cumulative Training Data Set: D = {};
Number of training rounds: R;
Training sampler per round: N;

for r = 1..R do
for n = 1..N do

sample θn ∼ π̃r(θ) with MCMC;
sample sn ∼M(θn);
Add (θn, sn) to D;

end
train qw,r(s|θ) on D with LSNL(w);
set π̃r+1(θ)← qw,r(sobs|θ)π(θ);

end
Result: qw,r(s|θ)

restricted to) on MDNs as density estimators was proposed by Lueckmann, Bassetto, et al., 2019.
While very similar in spirit, the authors suggest to train an ensemble of density estimators, to
approach the choice of parameters for simulations efficiently via active learning. I do not pursue
this line of reasoning further, however note that it is promising as a generally applicable method
for minimizing the amount of simulation runs needed for a desired level of posterior accuracy. This
mirrors the principles found in the literature on LFI which bases likelihood / posterior approximations
on Gaussian Processes (Meeds and Welling, 2014; Järvenpää, Michael U Gutmann, Vehtari, et al.,
2021). However I refrain from pursuing this lead in more detail here.

The last method I consider was recently proposed by Hermans, Begy, and Louppe, 2020, and uses
the ratio estimators as discussed in the sections on basic building blocks. Taking into account the
explanations provided in said section leads us directly to an amortization algorithm for likelihood-to-
evidence ratios rw(s|θ) via learning the classifier dw(s, θ),

rw(s|θ) = dw(s, θ)
1− dw(s, θ) (2.59)

Following (Lueckmann, Boelts, et al., 2021), the resulting algorithm will be called neural ratio
estimation (NRE) in the following. I show the details in algorithm 11. Conceived as a global
amortization algorithm, it can be specialized to specific datasets following Durkan, I. Murray, and
Papamakarios, 2020, and turned into a sequential version that closely resembles SNL/SNPE and is
consequently given the acronym SNRE (for sequential neural ratio estimation).

While in tendency slower in terms of sampling from the approximate posterior at inference, a
focus on likelihoods, if made possible by the given application, has several advantages over direct
posterior amortization. These derive from the simple fact that once the likelihood is amortized,
it can be reused freely across inference contexts. The parameter inflation resulting from e.g. a
hierarchical model, with subject-wise likelihoods, does not make the likelihood amortization any
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Algorithm 11: NRE
Input: Initialize: dw(s, θ);

Prior: π̃1(θ) = π(θ);
Simulator: M(θ);
Cumulative Training Data Set: D = {};
Set: Batch size B

while not converged do
for n = 1..B do

sample θb ∼ π(θ);
sample θ

′

b ∼ π(θ);
sample xb ∼M(θb);

end
Train-step: dw(s|θ) on batch with LNRE(w);

end
Result: dw∗(s|θ)

more complicated, but instead outsources the high dimensional inference part to the MCMC sampler.
Moreover, while the jury is still out (see Lueckmann, Boelts, et al., 2021), learning likelihood ratios as
a classification problem instead of relying on density estimators could be beneficial for performance
and training stability.

2.6 Exploiting LFI-NN in Cognitive Neuroscience

LFI methods are gaining traction in computational cognitive and neuroscience. The detailed overview
of the early historical roots of LFI methods (traditional ABC), gave a thorough circumscription of
the basic problems of Simulation Based Inference and early approaches and algorithms to attack
them.

The key problems and trade-offs identified by traditional ABC methods remain challenges to
drive the improvement of modern techniques and can be characterized as follows:

1. Increase efficiency of sampling mechanisms

2. Find optimal low dimensional summary statistics (approximate sufficient statistics)

3. Target the Likelihood or target the Posterior ?

4. Minimize the amount of simulations needed for one-off problems

5. Amortize simulations for re-usability

In the context of LFI-ABC we have seen how kernel smoothing and MCMC approaches improved
the original ABC rejection sampler. Second, we have seen approaches to select among candidate
summary statistics. While original LFI-ABC methods targeted the posterior directly, the synthetic
likelihood approach developed by Wood, 2010 is an early indication of the use of targeting likelihoods
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instead. LFI-ML approaches have done so via GPs. For LFI-ABC methods, I did not discuss the
problem of simulation run minimization as distinct from point 1. I note however that it has been
considered, via LFI-ML methods specifically using GPs, which allow for a straightforward mechanism
of simulation parameter selection since GPs provide uncertainty estimates out of the box (Acerbi,
2020; Wilkinson, 2014; Meeds and Welling, 2014; Järvenpää, Michael U Gutmann, Vehtari, et al.,
2021).

Lastly, LFI-ABC methods did traditionally not focus very much on the aspect of amortization.
The storage of simulation data in lookup tables is a common technique to aide re-usability across
datasets, however this methods suffers from various shortcomings. Reasonably large parameter spaces
(say |θ| > 10), for which we may want to store a table of summary statistics to parameter pairs
will impose unreasonable storage requirements. Moreover, to remain feasible such storage demands
a (rather coarse) notion of discretization of the parameter space, prohibiting sampling techniques
such as MCMC from performing at full resolution, which in turn leads to problems with mixing.
Incorporation of hierarchical inference setting, or rather general considerations of flexibility with
respect to inference scenarios is not commonly discussed.

I then discussed a range of modern LFI-NN techniques which have several advantages. I showed
how neural density estimators (e.g. Flows, MDNs), once trained on a particular problem, allow
for fast posterior sampling. Moreover, the mentioned frameworks of SNPE, SNRE as well as the
Bayesflow algorithm are all amenable to joint learning of low dimensional embedding (summary)
networks, which allows us to use the power of emerging Neural Network architectures specifically
designed for learning embeddings that consider the statistical and structural properties of application
relevant datasets. However, just as with LFI-ABC approaches, summary statistics can also be derived
from any other algorithm (e.g. Belghazi et al., 2018; Hjelm et al., 2018) and simply supplied as a
predefined embedding to any of the aforementioned algorithms. I have shown how LFI-NN algorithms
can be employed for both, the purpose of targeting the likelihood, as well as the purpose of targeting
the posterior distribution directly. LFI-NN algorithms, specifically the sequential variants SNPE and
SNRE, by design attempt to minimize the amount of simulations necessary to solve a given posterior
approximation problem. Lastly, all of the LFI-NN algorithms discussed are directly applicable when
global amortization of inference scenarios is the goal of deployment of an LFI technique.

The development of LFI-NN techniques is relatively young, gaining traction with the paper of
Papamakarios and I. Murray, 2016, but draws on a solid historical arc of research on neural density
estimation (Bishop, 1994; Uria, I. Murray, and Larochelle, 2013; Larochelle and I. Murray, 2011; Frey,
Hinton, and Dayan, 1996; Germain et al., 2015; Raiko et al., 2014). LFI-NN benefits from the already
significant but still developing interest of the Neural Network community in probabilistic approaches
and uncertainty estimation, partly spurned by the advent of GANs (Goodfellow, Pouget-Abadie,
et al., 2014). I emphasized the basic building blocks of LFI-NN, which form an exploitable interface
to large research enterprises in the development to more and more powerful neural density estimators,
ratio estimation techniques and more. Several working algorithms of great flexibility, with at best
modest exaggeration spanning the whole of the problem-space previously considered by LFI-ABC
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and LFI-ML methods, have shown its potential as a framework. Furthermore, there is a large current
momentum towards the implementation of user friendly programming interfaces to many of the
by now standard LFI-NN algorithms, which will lead to wider adoption and through the increased
exposure to real world datasets, further refinement and innovation on the algorithm side. Recent
papers, targeting the neuroscience and computational cognitive science communities, have already
pointed out the benefits which may accrue from these developments.

In the remainder of this section I will further discuss these benefits. I will make explicit how the
LFI-NN algorithms discussed in previous sections interface with a range of inference scenarios and
point out which of the discussed algorithms may respectively be applied for best results.

We will maintain an emphasis on end-to-end algorithms, which where necessary include learned
embedding (summary) networks. Providing a priori defined summary statistics is a special case.

The benefit of using such end-to-end algorithms stems from our ability to use a very broad
range of Neural Network architectures to serve as embeddings, while deriving the training signal
(gradient) strictly from the inference performance, which drives the training loss functions across
our LFI-NN methods. This is important since generative (mechanistic) models in neuroscience
and computational cognitive science produce a large variety of structural data types ranging from
simple single i.i.d vectors to complex time series data, across a range of modalities from reaction
times and choices over neural spiking patterns to time-courses of spatial attention allocation (Jang,
Sharma, and Drugowitsch, 2020; Frank, Gagne, et al., 2015; K.-F. Wong and X.-J. Wang, 2006). As
mentioned in the section on summary networks, suitable Neural Network architectures to produce
useful embeddings for each of these classes of datastructures are easily found in the Neural Network
literature, hence no fundamental roadblock persists for a wide range of proof of concept applications
(S. T. Radev, Mertens, et al., 2020). Successful training of a resulting end-to-end pipeline may
however strongly depend on the respective hyperparameters.

As hopefully convincingly argued, apart from a broad restriction on the number of underlying
parameters of a mechanistic model (current algorithms may not work well for models that with
|Θ| > 15), hardly any limitations on the use of LFI-NN algorithms remain.
Matching the goals of a project with the right algorithm however remains an important step for the
effective application of LFI-NN. Following a few general remarks, I illustrate this with our SSMs at
hand section 2, to make precise some of the considerations that may arise.

We can draw a substantial line between the use of LFI-NN for local (for a specific dataset) or
global purposes (amortization across a generous range of the parameter space). Specializing our
algorithms for a specific dataset may be useful under the following circumstances. First, we may have
a simulator which makes it prohibitively expensive (given a computing infrastructure) to attempt
amortization across a large parameter space. Second, we are interested in analysing our data with a
one-off exploratory model which may not have a high a priori expectation for reuse.

If computational limits allow, the global approach may be desirable however. First, once a
likelihood or posterior is amortized globally for a given mechanistic model, one is able to re-use
it across a wide range of future datasets and importantly, distribute the resulting network for use
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Figure 2.14. This figure summarizes aspects of the discussion in section 3.6. It shows the links
between the building blocks (left) discussed in sections 2.5.1, 2.5.2, and 2.5.3, and the LFI-NN
algorithms discussed in sections 2.5.4 and 2.5.4 (middle). The algorithms are linked with the
computational strategies discussed in 2.3, and aspects of deployment flexibility (right).

by other researchers who may be interested in testing their data against such model. This has the
immense benefit of systematically accruing use for the entire research community by amortizing a
model. Combined with the potential for downstream easy to use software packages that make such
models, including surrounding inference infrastructure, available to the community, this holds the
seeds of a revolutionary change in how resources for computational modeling may be shared across
the discipline. Our work on likelihood approximation networks (LANs) serves as one proof of concept
realization of this vision (Fengler et al., 2020), however novel toolboxes for Simulation Based Inference
(e.g. Tejero-Cantero et al., 2020) have equal promise in being utilized for such purposes. Second,
apart from re-usability, global amortization is useful for the downstream analysis of model properties.
When performing inference on synthetic datasets generated from across the parameter space, do
parameter trade-offs follow a consistent pattern, or can we partition the generative parameter space
according to well identifiable classes of pattern in the resulting posteriors? Are parameters consistently
identifiable / non-identifiable across the parameter space? Such analyses are crucial especially when
proposing new models to the community. Since I consider the benefits of the global approach to be
dominant, especially the potential benefits to the community, I generally recommend to attempt
global amortization whenever possible. LFI-NN however, as shown remains a very useful approach
for local posterior inference as well.

The second substantial dividing line separates model classes along their utility across separate
inference scenarios. Is it sensible to envision a given simulation model as being applied on experimental
data stemming from a variety of complex experimental designs? Could it be used for hierarchical
inference, varying the number of subject, and or the dataset-sizes by subject?
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If the answer to these questions is no, the benefits of targeting posterior distributions directly
may outweigh those that may result from targeting the likelihood. A primary purpose of an analysis
could lie for example in investigating the properties of a given model, such a parameter identifiability.
In these cases case amortizing the posterior may be preferred, since sampling from such amortized
posteriors can be significantly faster than sampling via the likelihood. In the case of the BayesFlow
algorithm, we simply draw samples from a conditional invertible flow, an operation that can provide
1000s of posterior sampling within seconds. Up to defective cases resulting from posterior leakage
outside of the allowed prior range, SNPE-C behaves similarly. SNL and SNRE however may use
MCMC algorithms to generate posterior samples. The notion of sampling directly from an amortized
flow does not apply here. The ratio or density estimator are primarily used for evaluation of the
density / ratio itself.

Furthermore, some models seem to make likelihood amortization inherently hard as compared
to targeting the posterior. The converse is true for other models (see Papamakarios, Sterratt, and
I. Murray, 2019 for examples of both). This trade-off may predetermine the focus by virtue of leaving
us only a single valid choice. If likelihood amortization is accessible however and one can answer the
above questions in the affirmative, the resulting added flexibility provides immense benefits.

Consider for example the Levy Flight model, or a DDM with collapsing bounds (see Figure
2.5). These model are suitable for the joint analysis of reaction time and choice data across a large
variety of experimental designs for which simpler versions, such as the basic DDM, have often been
used out of convenience rather than strong de facto theoretical commitments (Frank, Gagne, et al.,
2015; Cavanagh, Wiecki, et al., 2014; Cavanagh and Frank, 2014; Mads Lund Pedersen, Frank, and
Biele, 2017). The dissemination of SSMs as a useful framework of analysis of such large varieties
of experimental data has in turn produced the necessity of expanding the flexibility of connected
inference algorithms. Examples of such demands are the ability to include latent covariate processes
that may drive the model parameters on a trial by trial basis. Examples include linking EEG or
fMRI signals as conditional or trial level covariates via a regression model (Frank, Gagne, et al., 2015;
Cavanagh and Frank, 2014). Another established example consists of the nesting of a reinforcement
learning process to the model parameters of a DDM. These connections are just as valid for any of the
models listed in Figure 2.5. Standard inference procedures may allow a number of parameters to vary
across conditions, while theoretical commitments are made to fix other parameters which a priori are
judged to have no conceptual link to a given condition manipulation. Experimental datasets may
include any number of subjects, subject level datasets, highly variable numbers of trials etc. Posterior
amortization algorithms not only make many of these inference scenarios impossible to amortize
(e.g. trial by trial covariate processes). Scenarios for which we may successfully apply posterior
amortization (e.g. condition level effects) result in a highly specialized posterior samplers which
demand retraining for any slight variation in setup. This in turn defeats the ability for amortization
to lead to effective democratization of once incurred computational cost.

The polar opposite, is represented by learning trial wise likelihoods (suitable algorithms may be
SNRE or SNL), an approach emphasized in the authors prior work (Fengler et al., 2020). Once we
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have access to amortized trial wise likelihoods, any of the above mentioned inference scenarios are
immediately accessible. One may describe this approach as maximal modularization. I argue that
where possible, this is the amortization strategy to apply, since it simultaneously maximizes the
potential for democratization mentioned above. However, even intermediate levels of modularization
will reap benefits as to flexibility. As an example, we may want to generate subject level (condition
level, group level) likelihoods by virtue of data-set summary statistics. We have seen how the
summary statistic networks can by used to learn dataset embeddings (exploiting inherent structure
such as exchangeability etc.). One may use this approach for any of the SSMs listed in Figure 2.5,
to learn the likelihood function over summary statistics of single datasets (with varying size). This
may not always represent an easier problem than learning trial wise likelihoods, however summary
statistics can be better behaved. Once such subject level likelihoods are amortized, there may still
be flexibility with respect to experimental design considerations, which do not rely on trial by trial
level manipulations.

Lastly, focusing instead on amortization of a likelihood function in general decouples the amor-
tization problem from other parts of an inference pipeline (e.g. MCMC samplers). Downstream
one may interface with the whole ecosystem of posterior sampling algorithms. This adds significant
degrees of freedom for end-to-end solutions. Figure 2.14 summarizes the main points in the preceding
discussion in a simple graphic. It shows the dependence of specific LFI-NN algorithms on basic
building blocks, connects the algorithms with the computational strategies discussed in section 2.3
and emphasizes the degree of flexibility they provide downstream.

2.7 The software Landscape

The software landscape for ABC is steadily growing and in the foreseeable future I expect this trend
to continue, given that research in the area is multiplying.

This section is not meant to provide an exhaustive list of available software, rather I omit highly
specialized packages that implement primarily a single publication’s methods and focus instead on
the already popular general purpose packages, as well as emerging software with a certain ambition
towards generality.

One can roughly divide the ABC software terrain into three categories,

1. General purpose LFI-ABC packages with focus on variants of traditional ABC methods

2. Software that focuses on LFI-NN methods

3. Other software that may be co-opted for ABC computations

In the first category, designed for the R programming language there are the ABCtoolbox
(Wegmann et al., 2010), EasyABC (Jabot, Faure, and Dumoulin, 2013) and abc (Csilléry, François,
and Blum, 2012) packages. These implement a variety of traditional ABC samplers and especially
the abc package provides extra routines for simple ABC model selection including cross-validation
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Figure 2.15. Figure illustrates the software landscape as described in section 2.7. I emphasize that
this is not an exhaustive enumeration of all related software in existence.

for trained model selection schemes. A counterpart to these R packages for the Python programming
language is the ABCpy package which offers quite a comprehensive combination of a variety of
traditional ABC samplers and includes an interface to Pytorch (Paszke et al., 2019) for Neural
Network based summary statistic learning. Another notable library for python is the Engine for
Likelihood free Inference (ELFI) (Lintusaari et al., 2018), which has a focus on the BOLFI (Bayesian
Optimization for Likelihood Free Inference) (Michael U Gutmann and Corander, 2016) algorithm
and therefore is a good choice when working with very expensive simulators for which minimization
of the number of simulation runs is of highest priority.

LFI-NN methods, including pipelines for joint learning of summary statistics together with
posterior distributions and moreover global amortization of posteriors and likelihoods via neural
density estimators, are implemented in the pyDELFI (Tensorflow) (Alsing et al., 2019) and sbi
(Pytorch) (Tejero-Cantero et al., 2020) packages for the Python programming language. The main
focus of these packages is to provide a user friendly interface to variatiations of the SNPE / SNLE /
SNRE paradigm. The ABCpy, pyDELFI and sbi libraries are under active development and will
likely expand in capability in the recent future.

We now consider the third category of software packages. First, options for basic Simulation
Based Inference are included in the pytorch based probabilist programming language Pyro (Bingham
et al., 2019), as well as in the popular PYMC3 library for probabilistic modeling in Python (Salvatier,
Wiecki, and Fonnesbeck, 2016). Second, when imposing a restriction to differentiable simulators one
can utilize the probabilistic inference engines emerging directly as part of the PyTorch (distributions)
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and Tensorflow (Tensorflow probability). The rapid development of the PyTorch as well as Tensorflow
libraries suggest further extensions in their respective capabilities in quick succession, and render a
detailed taking stock of their current state somewhat redundant. It can however be projected that the
opportunities to co-opt PyTorch and Tensorflow for Likelihood Free Inference (LFI) will continue to
increase over time, especially with the emergence of neural density estimation on the center state of
Approximate Bayesian Computation techniques. Last but not least, the STAN platform for statistical
computing (Carpenter et al., 2017) is highlighted. STAN is an established as a major player in
the probabilistic computing world, however has explicit focus on Hamiltonian Monte Carlo (HMC)
(Hoffman and Gelman, 2014), and Variational Inference algorithms (Hoffman, D. M. Blei, et al.,
2013). An interface to STAN is offered for R, Python, Julia and other programming languages. As of
now other approaches to ABC are not yet explicitly supported in STAN, this may however happen
in the future.

2.8 Conclusion and Limitations

The goal of this review is to serve as a detailed introduction to likelihood free methods, from
basic conceptual ideas to the modern state of the art, with an emphasis on their utility for the
computational cognitive- and neuroscience communities. To serve as an entry-point into the LFI
literature, I discussed in detail several relevant algorithms spanning more than two decades of
research on LFI methods preceded by a general overview of the fields vast amount of techniques. The
arguments were constructed to aid understanding by developing basic conceptual building blocks
along the way. I generally built up to complex methods from simpler ones, often aided by the
analogous chronology of original development of the techniques. These developments were woven
together in a discussion on the benefits of LFI-NN methods over traditional LFI-ABC with emphasis
on the relative strengths and weaknesses of state of the art LFI-NN procedures. I stressed the benefits
of LFI-NN techniques which focus on likelihood amortization, and provided some guidelines on how
to choose a method for a given problem. To assist the reader, the discussion referred to the class of
SSMs as a running example. I ended with a short survey of currently available software packages for
LFI inference. This review adds to other similar reviews which recently appeared in the literature.
Cranmer, Brehmer, and Louppe, 2020, give a useful high level overview of current approaches to
Simulation Based Inference. The authors survey what may be considered design patterns for LFI
algorithms, and broadly discuss strengths, weaknesses and structural limitations of these patterns
respectively. Their paper however lacks discussion of any methods in sufficient detail to lay bare
the basic technical building blocks for an uninitiated reader. Papamakarios, Nalisnick, et al., 2019,
review flow based Neural Networks in great detail, but do not primarily focus their discussion on LFI.
Palestro, Sederberg, et al., 2018 discuss the power of LFI, but neither consider amortization strategies,
nor consider LFI-NN methods, implicitly ignoring this rising trend. S. T. Radev, A. Voss, et al., 2020
provide a high level cognitive science focused, forward looking account of LFI-NN algorithms for
amortization. However the authors focus on the amortization of posteriors and give neither a detailed
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nor sufficiently broad account of the LFI-NN methods available today. None of the aforementioned
reviews consider a detailed account of the emerging marriage between global amortization strategies
and complex experimental designs, a main emphasis and point of focus of this review.

Last, to aid the interested reader I make explicit how I narrowed the scope of the discussion
to achieve the goals of this chapter. To maintain focus on Neural Network based techniques, I
de-emphasized the parallel and ongoing development of LFI-ML algorithms. Due to their potential
for amortization techniques, I believe LFI-NN will develop to serve as the dominant framework,
however specific problems may reasonably call for a particular LFI-ML methods instead. I consider
aiding such a choice outside the scope of this review. Further, I do not engage in any discussion
of problems concerning Bayesian inference apart from likelihood and posterior approximation and
sampling methods as they pertain to the respective approximation algorithms. Such related problems
include calibration (Talts et al., 2018) of the inference procedure, evidence calculation (Sisson, Fan,
and M. Beaumont, 2018; Didelot et al., 2011; Wieschen, A. Voss, and S. Radev, 2020), and model
comparison in general. These form an integral part of a fully developed end-to-end approach to
likelihood inference, and play an important role in day to day computational science. A sufficiently
detailed discussion however would have significantly expanded the scope of the discussion.
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Chapter 3

Likelihood approximation networks
(LANs) for fast inference of
simulation models in cognitive
neuroscience

In cognitive neuroscience, computational modeling can formally adjudicate between theories and
affords quantitative fits to behavioral/brain data. Pragmatically, however, the space of plausible
generative models considered is dramatically limited by the set of models with known likelihood
functions. For many models, the lack of a closed-form likelihood typically impedes Bayesian inference
methods. As a result, standard models are evaluated for convenience, even when other models
might be superior. Likelihood-free methods exist but are limited by their computational cost or
their restriction to particular inference scenarios. Here, we propose neural networks that learn
approximate likelihoods for arbitrary generative models, allowing fast posterior sampling with only
a one-off cost for model simulations that is amortized for future inference. We show that these
methods can accurately recover posterior parameter distributions for a variety of neurocognitive
process models. We provide code allowing users to deploy these methods for arbitrary hierarchical
model instantiations without further training.
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3.1 Introduction

Computational modeling has gained traction in cognitive neuroscience in part because it can
guide principled interpretations of functional demands of cognitive systems while maintaining a
level of tractability in the production of quantitative fits of brain-behavior relationships. For
example, models of reinforcement learning are frequently used to estimate the neural correlates of
the exploration/exploitation tradeoff, of asymmetric learning from positive versus negative outcomes,
or of model-based vs model-free control (Schoennberg et al., 2007; Niv et al., 2012; Frank, Samanta,
et al., 2007; Zajkowski, Kossut, and Wilson, 2017; Badre et al., 2012; Nathaniel D Daw et al.,
2011). Similarly, models of dynamic decision-making processes are commonly used to disentangle
the strength of the evidence for a given choice from the amount of that evidence needed to commit
to any choice, and how such parameters are impacted by reward, attention, and neural variability
across species (Rangel, Camerer, and Montague, 2008; Forstmann et al., 2010; Krajbich and Rangel,
2011; Frank, Gagne, et al., 2015; Yartsev et al., 2018; Doi et al., 2020). Parameter estimates might
also be used as a theoretically-driven method to reduce the dimensionality of brain/behavioral data
that can be used for prediction of e.g. clinical status in computational psychiatry (Huys, Maia, and
Frank, 2016).

Interpreting such parameter estimates requires robust methods that can estimate their generative
values, ideally including their uncertainty. For this purpose, Bayesian statistical methods have gained
traction. The basic conceptual idea in Bayesian statistics is to treat parameters θ and data x as
stemming from a joint probability model p(θ, x). Statistical inference proceeds by using Bayes’ rule,

p(θ|x) = p(x|θ)p(θ)
p(x)

to get at p(θ|x), the posterior distribution over parameters given data. p(θ) is known as the prior
distribution over the parameters θ, and p(x) is known as the evidence or just probability of the data
(a quantity of importance for model comparison). The term p(x|θ), the probability (density) of the
dataset x given parameters θ, is known as the likelihood (in accordance with usual notation, we
will also write ℓ(θ|x) in the following). It is common in cognitive science to represent likelihoods as
p(x|θ, s), where s specifies a particular stimulus. We suppress s in our notation, but note that our
approach easily generalizes when explicitly conditioning on trial-wise stimuli. Bayesian parameter
estimation is a natural way to characterize uncertainty over parameter values. In turn, it provides a
way to identify and probe parameter trade-offs. While we often don’t have access to p(θ|x) directly,
we can draw samples from it instead, for example via Markov Chain Monte Carlo (Robert and
Casella, 2013; Diaconis, 2009; Robert and Casella, 2011).

Bayesian estimation of the full posterior distributions over model parameters contrast with
maximum likelihood estimation methods often used to provide single best parameter values, without
considering their uncertainty or whether other parameter estimates might give similar fits. Bayesian
methods naturally extend to settings that assume an implicit hierarchy in the generative model in
which parameter estimates at the individual level are informed by the distribution across a group, or
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even to assess within an individual how trial-by-trial variation in (for example) neural activity can
impact parameter estimates (commonly known simply as hierarchical inference). Several toolboxes
exist for estimating the parameters of popular models like the drift diffusion model of decision making
and are widely used by the community for this purpose (Wiecki, Sofer, and Frank, 2013; Heathcote
et al., 2019; Turner, Van Maanen, and Forstmann, 2015b; Ahn, Haines, and Zhang, 2017). Various
studies have used these methods to characterize how variability in neural activity, and manipulations
thereof, alter learning and decision parameters that can quantitatively explain variability in choice
and response time distributions (Cavanagh et al., 2011; Frank, Gagne, et al., 2015; Herz et al., 2016;
Pedersen and Frank, 2020).

Traditionally, however, posterior sampling or maximum likelihood estimation for such models
required analytical likelihood functions: a closed-form mathematical expression providing the likeli-
hood of observing specific data (reaction times and choices) for a given model and parameter setting.
This requirement limits the application of any likelihood-based method to a relatively small subset
of cognitive models chosen for so-defined convenience instead of theoretical interest. Consequently,
model comparison and estimation exercises are constrained, as many important but likelihood-free
models were effectively untestable or required weeks to process a single model formulation. Testing
any slight adjustment to the generative model (e.g., different hierarchical grouping or splitting
conditions) requires a repeated time investment of the same order. For illustration, we focus on the
class of sequential sampling models applied to decision-making scenarios, with the most common
variants of the drift diffusion model (DDM). The approach is, however, applicable to any arbitrary
domain.

In the standard DDM, a two-alternative choice decision is modeled as a noisy accumulation of
evidence toward one of two decision boundaries (Ratcliff and McKoon, 2008). This model is widely
used as it can flexibly capture variations in choice, error rates, and response time distributions across
a range of cognitive domains and its parameters have both psychological and neural implications.
While the likelihood function is available for the standard DDM and some variants including inter-trial
variability of its drift parameter, even seemingly small changes to the model form, such as dynamically
varying decision bounds (Cisek, Puskas, and El-Murr, 2009; Hawkins et al., 2015) or multiple choice
alternatives (Krajbich and Rangel, 2011), are prohibitive for likelihood-based estimation, and instead
require expensive Monte Carlo simulations, often without providing estimates of uncertainty across
parameters.

In the last decade and a half, Approximate Bayesian Computation (ABC) algorithms have grown
to prominence (Sisson, Fan, and Beaumont, 2018). These algorithms enable one to sample from
posterior distributions over model parameters, where models are defined only as simulators, which
can be used to construct empirical likelihood distributions (Sisson, Fan, and Beaumont, 2018). ABC
approaches have enjoyed successful application across life and physical sciences (e.g., Akeret et al.,
2015), and notably, in cognitive science (Turner and Van Zandt, 2018), enabling researchers to
estimate theoretically interesting models that were heretofore intractable. However, while there have
been many advances without sacrificing information loss in the posterior distributions (Turner and
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Figure 3.1. A The space of theoretically interesting models in the cognitive neurosciences (red)
is much larger than the space of mechanistic models with analytic likelihood functions (green).
Traditional ABC methods require models that have low dimensional sufficient statistics (blue). B
Illustrates how LANs can be used in lieu of online simulations for efficient posterior sampling. The
left panel shows the predominant PDA method used for ABC in the cognitive sciences (Turner,
Van Maanen, and Forstmann, 2015a). For each step along a Markov chain, 10K-100K simulations
are required to obtain a single likelihood estimate. The right panel shows how we can avoid the
simulation steps during inference using amortized likelihood networks that have been pretrained using
empirical likelihood functions (operationally in this paper: Kernel density estimates and discretized
histograms).

Sederberg, 2014; Holmes, 2015), such ABC methods typically require many simulations to generate
synthetic or empirical likelihood distributions, and hence can be computationally expensive (in some
cases prohibitive – it can take weeks to estimate parameters for a single model). This issue is further
exacerbated when embedded within a sequential Markov Chain Monte Carlo (MCMC) sampling
scheme, which is needed for unbiased estimates of posterior distributions. For example, one typically
needs to simulate between 10,000 - 100,000 times (the exact number varies depending on the model)
for each proposed combination of parameters (i.e., for each sample along a Markov chain, which
may itself contain tens of thousands of samples), after which they are discarded. This situation is
illustrated in Figure 3.1, where the red arrows point at the computations involved in the approach
suggested by Turner, Van Maanen, and Forstmann, 2015a.

To address this type of issue, the statistics and machine learning communities have increasingly
focused on strategies for the amortization of simulation-based computations (Gutmann et al., 2018;
Papamakarios and I. Murray, 2016; Papamakarios, Nalisnick, et al., 2019; Lueckmann et al., 2019a;
Lueckmann et al., 2019b; S. T. Radev, Mertens, Voss, and Köthe, 2020; S. T. Radev, Mertens,
Voss, Ardizzone, et al., 2020; Gonçalves et al., 2020). The aim is generally to use model simulations
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up-front and learn a reusable approximation of the function of interest (targets can be the likelihood,
the evidence, or the posterior directly).

In this article, we develop a general ABC method (and toolbox) that allows users to perform
inference on a significant number of neurocognitive models without repeatedly incurring substantial
simulation costs. To motivate our particular approach and situate it in the context of other methods,
we outline the following key desiderata:

1. First, the method needs to be easily and rapidly deployable to end-users for Bayesian inference
on various models hitherto deemed computationally intractable. This desideratum naturally
leads us to an amortization approach, where end-users can benefit from costs incurred upfront.

2. Second, our method should be sufficiently flexible to support arbitrary inference scenarios,
including hierarchical inference, estimation of latent covariate (e.g., neural) processes on the
model parameters, arbitrary specification of parameters across experimental conditions, and
without limitations on data-set sizes. This desideratum leads us to amortize the likelihood
functions, which (unlike other amortization strategies) can be immediate applied to arbitrary
inference scenarios without further cost.

3. Third, we desire approximations that do not apriori sacrifice covariance structure in the
parameter posteriors, a limitation often induced for tractability in variational approaches to
approximate inference (Blei, Kucukelbir, and McAuliffe, 2017).

4. Fourth, end-users should have access to a convenient interface that integrates the new methods
seamlessly into pre-existing workflows. The aim is to allow users to get access to a growing
database of amortized models through this toolbox and enable increasingly complex models to
be fit to experimental data routinely, with minimal adjustments to the user’s working code. For
this purpose, we will provide an extension to the widely used HDDM toolbox (Wiecki, Sofer,
and Frank, 2013; Pedersen and Frank, 2020) for parameter estimation of DDM and RL models.

5. Fifth, our approach should exploit modern computing architectures, specifically parallel com-
putation. This leads us to focus on the encapsulation of likelihoods into neural network
architectures, which will allow batch-processing for posterior inference.

Guided by these desiderata, we developed two amortization strategies based on Neural Networks
(NNs) and empirical likelihood functions. Rather than simulate during inference, we instead train NNs
as parametric function approximators to learn the likelihood function from an initial set of apriori
simulations across a wide range of parameters. By learning (log) likelihood functions directly, we
avoid posterior distortions that result from inappropriately chosen (user defined) summary statistics
and corresponding distance measures as applied in traditional ABC methods (Sisson, Fan, and
Beaumont, 2018). Once trained, likelihood evaluation only requires a forward pass through the NN
(as if it were an analytic likelihood) instead of necessitating simulations. Moreover, any algorithm
can be used to facilitate posterior sampling, maximum likelihood estimation (MLE), or maximum a
posteriori estimation (MAP).
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For generality, and because they each have their advantages, we use two classes of architectures,
Multi-layered-perceptrons (MLPs) and Convolutional Neural Networks (CNNs), and two different
posterior sampling methods (MCMC and Importance sampling). We show proofs of concepts
using posterior sampling and parameter recovery studies for a range of cognitive process models of
interest. The trained neural networks provide the community with a (continually expandable) bank of
encapsulated likelihood functions that facilitate consideration of a larger (previously computationally
inaccessible) set of cognitive models, with orders of magnitude speedup relative to simulation-based
methods. This speedup is possible because costly simulations only have to be run once per model
upfront and henceforth be avoided during inference: previously executed computations are amortized
and then shared with the community.

Moreover, we develop standardized amortization-pipelines that allow the user to apply this method
to arbitrary models, requiring them to provide only a functioning simulator of their model of choice.

In Section 3.2 we situate our approach in the greater context of approximate Bayesian computation
(ABC), with a brief review of online and amortization algorithms. Section 3.3 describes the
amortization-pipelines we propose as well as suggested use-cases. Section 3.4 discusses the cognitive
process models that we utilized as relevant test-beds for our methods. Section 3.5 shows proof-
of-concept parameter recovery studies for the two proposed algorithms, demonstrating that the
method accurately recovers both the posterior mean and variance (uncertainty) of generative model
parameters, and that it does so at a run-time speed of orders of magnitude faster than traditional
ABC approaches without further training. In Section 3.5.4 we further demonstrate an application to
hierarchical inference, in which our trained networks can be imported into widely used toolboxes
for arbitrary inference scenarios. In Section 3.6 and Section 3.7, we further situate our work in the
context of other ABC amortization strategies and discuss limitations and future work.

3.2 Approximate Bayesian Computation

ABC methods apply when one has access to a parametric stochastic simulator (also referred to as
generative model), but, unlike the usual setting for statistical inference, no access to an explicit
mathematical formula for the likelihood of observations given the simulator’s parameter setting.

While likelihood functions for a stochastic stimulator can in principle be mathematically de-
rived, this can be exceedingly challenging even for some historically famous models such as the
Ornstein-Uhlenbeck process (Lipton and Kaushansky, 2018), and may be intractable in many others.
Consequently, the statistical community has increasingly developed ABC tools that enable posterior
inference of such "likelihood-free" stochastic models, while completely bypassing any likelihood
derivations (Cranmer, Brehmer, and Louppe, 2020).

Given a parametric stochastic simulator model M and dataset x, instead of exact inference
based on pM(θ|x), these methods attempt to draw samples from an approximate posterior p̃M(θ|x).
Consider the following general equation:
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p̃M(θ|x) ∝ p̃M(x|θ)π(θ) ∝
∫

Kh (||sM − sx||) pM(sM|θ) dsM π(θ)

where sM refers to sufficient statistics (roughly, summary statistics of a dataset that retain sufficient
information about the parameters of the generative process). 1 Kh(||sM − sx||), refers to a kernel-
based distance measure / cost function, which evaluates a probability density function for a given
distance between the observed and expected summary statistics ||sM − sx||. The parameter h

(commonly known as bandwidth parameter) modulates the cost gradient. Higher values of h lead to
more graceful decreases in cost (and therefore a worse approximation of the true posterior).

By generating simulations, one can use such summary statistics to obtain approximate likelihood
functions, denoted as p̃M(x|θ), where approximation error can be mitigated by generating large
numbers of simulations. The caveat is that the amount of simulation runs needed to achieve a desired
degree of accuracy in the posterior can render such techniques computationally infeasible.

With a focus on amortization, our goal is to leverage some of the insights and developments in
the ABC community to develop neural network architectures that can learn approximate likelihoods
deployable for any inference scenario (and indeed any inference method, including MCMC, variational
inference, or even maximum likelihood estimation) without necessitating repeated training. We next
describe our particular approach, and we return to a more detailed comparison to existing methods
in section .

3.3 Learning the Likelihood with simple Neural Network
Architectures

In this section we outline our approach to amortization of computational costs of large numbers
of simulations required by traditional ABC methods. Amortization approaches, incur a one-off
(potentially quite large) simulation cost to enable cheap, repeated inference for any dataset. Recent
research has lead to substantial developments in this area (Cranmer, Brehmer, and Louppe, 2020).
The most straightforward approach is to simply simulate large amounts of data and compile a
database of how model parameters are related to observed summary statistics of the data (Mestdagh
et al., 2019). This database can then be used during parameter estimation in empirical datasets
using a combination of nearest neighbor search and local interpolation methods. However, this
approach suffers from the curse of dimensionality with respect to storage demands (a problem that is
magnified with increasing model parameters). Moreover, its reliance on summary statistics (Sisson,
Fan, and Beaumont, 2018) does not naturally facilitate flexible re-use across inference scenarios (e.g.
hierarchical models, multiple conditions while fixing some parameters across conditions etc.).

1We note two observations regarding sufficient statistics. First, a sufficient statistic is, in principle, simply a function
of the data f({x1, ..., xn}) 7→ {s1, ..., sm}, where hopefully m << n. The identity map is one such function,
whence we can consider the data itself as a special case (s can be x). Second, it is not common to have well-defined,
low dimensional sufficient statistics for any given M.
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To fulfill all desiderata outlined in the introduction, we focus on directly encapsulating the
likelihood function over empirical observations (i.e., choices. RTs) of a simulation model so that
likelihood evaluation is substantially cheaper than constructing (empirical) likelihoods via model
simulation online during inference. This strategy then allows for flexible reuse of such approximate
likelihood functions ℓ̂(θ|x), in a large variety of inference scenarios applicable to common experimental
design paradigms. Specifically, we encapsulate ℓ̂(θ|x) as a feed-forward neural network, which allows
for parallel evaluation by design. We refer to these networks as likelihood approximation networks
(LANs).

Figure 3.1 spells out the setting (panel A) and usage (panel B) of such a method. The LAN
architectures used in this paper are simple, small in size and are made available for download
for local usage. While this approach does not allow for instantaneous posterior inference, it does
considerably reduce computation time (by up to three orders of magnitude; see “Run-time" section
below) when compared to approaches that demand simulations at inference. Notably, this approach
also substantially speeds up inference even for models that are not entirely likelihood free but
nevertheless require costly numerical methods to obtain likelihoods. Examples are the full DDM with
inter-trial variability in parameters (for which likelihoods can be obtained via numerical integration,
as is commonly done in software packages such as HDDM but with substantial cost), but also other
numerical methods for generalized DDMs (Shinn, Lam, and J. D. Murray, 2020; Drugowitsch, 2016).
At the same time we maintain the high degree of flexibility with regards to deployment across
arbitrary inference scenarios. As such, LANs can be treated as a highly flexible plugins to existing
inference algorithms and remain conceptually simple and lightweight.

Before elaborating our LAN approach, we briefly situate it in the context of some related work.
One branch of literature which interfaces ABC with deep learning attempts to amortize posterior

inference directly in end-to-end neural networks (S. T. Radev, Mertens, Voss, and Köthe, 2020; S. T.
Radev, Mertens, Voss, Ardizzone, et al., 2020; Papamakarios and I. Murray, 2016; Papamakarios,
Nalisnick, et al., 2019; Gonçalves et al., 2020). Here, neural network architectures are trained with
a large number of simulated datasets to produce posterior distributions over parameters, and once
trained, such networks can be applied to directly estimate parameters from new datasets without
need for further simulations. However, the goal to directly estimate posterior parameters from data
requires the user to first train a neural network for the very specific inference scenario in which it
is applied empirically. Such approaches are not easily deployable if a user wants to test multiple
inference scenarios (e.g., parameters may vary as a function of task condition or brain activity, or in
hierarchical frameworks) and consequently, they do not achieve our second desideratum needed for a
user-friendly toolbox making inference cheap and simple.

We return to discuss the relative merits and limitations of these and further alternative approaches
in the Discussion.

Formally, we use model simulations to learn a function fΦ(x, θ), where fΦ(.) is the output of
a neural network with parameter vector Φ (weights, biases). The function fΦ(x, θ) is used as an
approximation ℓ̂(θ|x) of the likelihood function ℓ(θ|x). Once learned, we can use such f as a plug-in
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to Bayes Rule,

p̂(θ|x) ∝
N∏

i=1
ℓ̂(θ|xi)p(θ)

To perform posterior inference we can now use a broad range of existing Monte Carlo (MC) or
Markov Chain Monte Carlo (MCMC) algorithms. We note that, fulfilling our second desideratum, an
extension to hierarchical inference is as simple as plugging in our neural network into a probabilistic
model of the form,

p̂(θ|x) ∝
J∏

j=1

N∏
i=1

ℓ̂(θj |xji)p(θj |α)p(α|γ)

where α refers to generic group level global parameters, and γ serves as a generic fixed hyperparameter
vector.

We provide proofs of concepts for two types of LANs. While we use multi-layered perceptrons
(MLPs) and convolutional neural networks (CNNs), of conceptual importance is the distinction
between the two problem representations they tackle, rather than the network architectures per se.

The first problem representation, which we call the pointwise approach, considers the functions
fΦ(x|θ), where θ is the parameter vector of a given stochastic simulator model, and x is a single data
point (trial outcome). The pointwise approach is a mapping from the input dimension |Θ|+ |x|, where
|.| refers to the cardinality, to the one dimensional output. The output is simply the log-likelihood
of the single datapoint x given the parameter vector θ. As explained in the next section, for this
mapping we chose simple MLPs.

The second problem representation, which we will refer to as the histogram approach, instead
aims to learn a function fΦ(.|θ), which maps a parameter vector θ to the likelihood over the full
(discretized) dataspace (i.e., the likelihood of the entire RT distributions at once). We represent the
output space as an outcome histogram with dimensions n×m (where in our applications n is the
number of bins for a discretization of reaction times, and m refers to the number of distinct choices).
Thus our mapping has input dimension |Θ| and output dimension |m×n|. Representing the problem
this way, we chose CNNs as the network architecture.

In each of the above cases, we pursued the architectures that seemed to follow naturally, without
any commitment to their optimality. The pointwise approach operates on low dimensional inputs
and outputs. With network evaluation speed being of primary importance to us, we chose a relatively
shallow MLP to learn this mapping, given that it was expressive enough. However, when learning a
mapping from a parameter vector θ to the likelihood over the full dataspace, as in the histogram
approach, we map a low dimensional data manifold to a much higher dimensional one. Using an
MLP for this purpose would imply that the number of neural network parameters needed to learn
this function would be orders of magnitude larger than using a CNN. Not only would this mean that
forward passes through the network would take longer, but also an increased propensity to overfit on
an identical data budget.
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Figure 3.2. High level overview of our approaches. For a given model M, we sample model
parameters θ from a region of interest (upper left), and run 100k simulations (mid left). We use
those simulations to construct a KDE-based empirical likelihood, and a discretized (histogram-like)
empirical likelihood. The combination of parameters and the respective likelihoods is then used to
train the likelihood networks (middle). Once trained we can use the MLP and CNN for posterior
inference given an empirical / experimental dataset (right).

The next two sections will give some detail regarding the networks chosen for the pointwise
and histogram LANs. Figure 3.1 illustrates the general idea of our approach while Figure 3.2 gives
a conceptual overview of the exact training and inference procedure proposed. These details are
thoroughly discussed in the last section of the paper.

3.3.1 Pointwise approach: Learn likelihoods of individual observations
with MLPs

As a first approach, we use simple Multi-layered Perceptrons (MLPs), to learn the likelihood function
of a given stochastic simulator. The network learns the mapping {θ, x} → log ℓΦ(θ|x), where θ

represents the parameters of our stochastic simulator, x are the simulator outcomes (in our specific
examples below, x, refers to the tuple (rt, c) of reaction times and choices), and log ℓ(θ|x) is the
log-likelihood of the respective outcome. The trained network then serves as the approximate
likelihood function log ℓ̂Φ(θ|x). We emphasize that the network is trained as a function approximator,
to provide us with a computationally cheap likelihood estimate, not to provide a surrogate simulator.
Biological plausibility of the network is therefore not a concern when it comes to architecture selection.
Fundamentally this approach attempts to learn the log-likelihood via a non-linear regression, for
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which we chose an MLP. Log-likelihood labels for training were derived from empirical likelihoods
functions (details in section 3.8) which in turn were constructed as kernel density estimates (KDEs).
The construction of KDEs roughly followed Turner, Van Maanen, and Forstmann, 2015a. We chose
the Huber loss function (detailed in section 3.8) because it is more robust to outliers and thus less
susceptible to distortions that can arise in the tails of distributions.

3.3.2 Histogram approach: Learn likelihoods of entire dataset distribu-
tions with CNNs

Our second approach is based on a convolutional neural network (CNN) architecture. Whereas
the MLP learned to output a single scalar likelihood output for each data point ("trial", given a
choice, reaction time and parameter vector), the goal of the CNN was to evaluate, for given model
parameters, the likelihood of an arbitrary number of datapoints via one forward pass through the
network. To do so, the output of the CNN was trained to produce a probability distribution over a
discretized version of the dataspace, given a stochastic model and parameter vector. The network
learns the mapping θ → log ℓΦ(θ|.).

There is a side-benefit, in line with the methods proposed by Lueckmann et al., 2019b; Papa-
makarios, Sterratt, and I. Murray, 2019. The CNN can in fact act as a surrogate simulator, for the
purpose of this paper we do not exploit this possibility however. Since here we attempt to learn
distributions, labels were simple binned empirical likelihoods, and as a loss function we chose the
KL-divergence between the networks output distribution and the label distribution (details in section
3.8).

3.3.3 Training Specifics

Most of the specifics regarding training procedures are discussed in detail in section 3.8, however we
mention some aspects here to aid readability.

We used 1.5M , and 3M parameter vectors (based on 100k simulations each), to train the MLP
and CNN approach respectively. We chose these numbers consistently across all models and in fact
trained on less examples for the MLP only due to RAM limitations we faced on our machines (which
in principle can be circumvented). These numbers are purposely high (but in fact quite achievable
with access to a computing cluster, simulations for each model was on the order of hours only)
since we were interested in a workable proof of concept. We did not investigate that systematic
minimization of training data, however some crude experiments indicate that a decrease by an order
of magnitude did not seriously affect performance.

We emphasize that this is in line with the expressed philosophy of our approach. The point of
amortization is to throw a lot of resources at the problem once, so that downstream inference is made
accessible even on basic setups (a usual laptop). In case simulators are prohibitively expensive even
for reasonably sized compute clusters, minimizing training data may gain more relevance. In such
scenarios, training the networks will be very cheap as compared to simulation time, which implies
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that retraining with progressively more simulations until one observes asymptotic test performance
is a viable strategy.

3.4 Test Beds

We choose variations of sequential sampling models (SSMs) common in the cognitive neurosciences as
our test-bed (Figure 3.3). The range of models we consider permits great flexibility in allowable data
distributions (choices and response times). We believe that initial applications are most promising
for such SSMs, because (i) analytic likelihoods are available for the most common variants (and
thus provide an upper-bound benchmark for parameter recovery), and (ii) there exist many other
interesting variants for which no analytic solution exists.

We note that there is an intermediate case in which numerical methods can be applied to obtain
likelihoods for a broader class of models (e.g., Shinn, Lam, and J. D. Murray, 2020). These methods
are nevertheless computationally expensive and do not necessarily afford rapid posterior inference.
Therefore amortization via LANs is attractive even for these models. Figure 3.3 further outlines this
distinction.

We emphasize that our methods are quite general and any model that generates discrete choices
and response times from which simulations can be drawn within a reasonable amount of time can be
suitable to the amortization techniques discussed in this paper (given that the model has parameter
vectors of dimension roughly < 15). In fact, LANs are not restricted to models of reaction time and
choice to begin with, even though we focus on these as test-beds.

As a general principle, all models tested below are based on stochastic differential equations of
the following form,

dXt = a(t, x) dt + b(t, x) dBt, X0 = w

where we are concerned with the probabilistic behavior of the particle (or vector of particles) X. The
behavior of this particle is driven by a(t, x), an underlying drift function, b(t, x) an underlying noise
transformation function, Bt an incremental noise process, and X0 = w a starting point.

Of interest to us are specifically the properties of the first-passage-time-distributions (FPTD)
for such processes, which are needed to compute the likelihood of a given response time/choice
pair {rt, c}. In these models, the exit region of the particle (i.e., the specific boundary it reaches)
determines the choice, and the time point of that exit determines the response time. The joint
distribution of choices and reaction times are referred to as a FPTDs.

Given some exit-region E , such FPTD’s are formally defined as,

fE(t) = p(inf
τ
{(Xτ ∈ E)} = t)

In words, a first passage time, for a given exit region, is defined as the first time point of entry
into the exit region, and the FPTD is the probability, respectively of such an exit happening at any
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specified time t (Ratcliff, 1978; W. and V., 1968). Partitioning the exit region into subsets E1, ...., En

(for example representing n choices), we can now define the set of defective distributions,

{fE1(t; θ), ..., fEN
(t; θ)}

where θ ∈ Θ describes the collection of parameters driving the process. For every Ei,∫
[0,+∞]

fEi(t; θ)dt = P (X exits into Ei) = P ( i gets chosen)

{fE⟩ , ..., fE\} jointly define the FPTD such that,

n∑
i=1

∫
[0,+∞]

fEi
(t; θ)dt = 1

These functions fEi
, jointly serve as the likelihood function s.t.,

ℓ(θ; {rt, c}) = fEc
(t; θ)

For illustration we focus the general model formulation above to the standard DDM. Details
regarding the other models in our test-bed are relegated to the methods section at the end of the
paper.

To obtain the DDM from the general equation above, we set a(t, x) = v (a fixed drift across time),
b(t, x) = 1 (a fixed noise variance across time), and ∆B ∼ N (0, ∆t). The DDM applies to the two
alternative decision case, where decision correspond to to particle crossings of an upper or lower
fixed boundary. Hence E1 = {R ≥ a} and E2 = {R ≤ −a} where a is a parameter of the model. The
DDM also includes a normalized starting point w (capturing potential response biases or priors), and
finally a non-decision time τ (capturing the time for perceptual encoding and motor output). Hence,
the parameter vector for the DDM is then θ = (v, a, w, τ). The SDE is defined as,

dXτ+t = v dt + dW, Xτ = w

The DDM serves principally as a basic proof of concept for us, in that it is a model for which we
can compute the exact likelihoods analytically (W. and V., 1968; Navarro and Fuss, 2009).

The other models chosen for our test-bed systematically relax some of the fixed assumptions of
the basic DDM, as illustrated in Figure 3.3.

We note that many new models can be constructed from the components tested here. As an
example of this modularity, we introduce inhibition/excitation to the race model, which gives us
the Leaky Competing Accumulator (LCA) (Usher and McClelland, 2001). We could then further
extend this model by introducing parameterized bounds. We could introduce reinforcement learning
parameters to a DDM (Pedersen and Frank, 2020) or in combination with any of the other decision
models. Again we emphasize that while these diffusion-based models provide a large test-bed for our
proposed methods, applications are in no way restricted to this class of models.
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Figure 3.3. Pictorial representation of the stochastic simulators that form our test-bed. Our point
of departure is the standard simple drift diffusion model (DDM) due its analytical tractability and its
prevalence as the most common SSM in cognitive neuroscience. By systematically varying different
facets of the DDM, we test our LANs across a range of SSMs for parameter recovery, goodness of
fit (posterior predictive checks) and inference runtime. We divide the resulting models into four
classes as indicated by the legend. We consider the simple DDM in the analytical likelihood (solid
line) category although, strictly speaking, the likelihood involves an infinite sum and thus demands
an approximation algorithm introduced by Navarro & Fuss, but this algorithm is sufficiently fast
to evaluate so that it is not a computational bottleneck. The Full-DDM model needs numerical
quadrature (dashed line) to integrate over variability parameters, which inflates the evaluation time
by one to two orders of magnitude compared to the simple DDM. Similarly, likelihood approximations
have been derived for a range of models using the Fokker-Planck equations (dotted-dashed line),
which again incurs non-negligible evaluation cost. Finally, for some models no approximations exist
and we need to resort to computationally expensive simulations for likelihood estimates (dotted
line). Amortizing computations with LANs can substantially speed up inference for all but the
analytical likelihood category (but see run-time for how it can even provide speed up in that case for
large datasets).

3.5 Results

3.5.1 Networks learn likelihood function manifolds

Across epochs of training, both training and validation loss decrease rapidly and remain low (Fig-
ure 3.4A), which suggests that over-fitting is not an issue, which is sensible in this context. The low
validation loss further shows that the network can interpolate likelihoods to specific parameter values
it has not been exposed to (with the caveat that it has to be exposed to the same range; no claims
are made about extrapolation).

Indeed, a simple interrogation of the learned likelihood manifolds shows that they smoothly vary
in an interpretable fashion with respect to changes in generative model parameters (Figure 3.4B).
Moreover, Figure 3.4C shows that the MLP-likelihoods mirror those obtained by KDEs using 100,000
simulations, even though the model parameter vectors were drawn randomly and thus not trained
per se. We also note that the MLP-likelihoods appropriately filter out simulation noise (random
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Figure 3.4. A Shows the training and validation loss for the MLP for the DDM model across epochs.
Training was driven by the Huber loss. The MLP learned the mapping {θ, rt, c} 7→ logℓ(θ|rt, c), i.e.,
the log likelihood of a single choice/RT data point given the parameters. Training error declines
rapidly, and validation loss trailed training loss without further detriment (no overfitting). Please see
Figure 3.2 and section 3.8 for more details about training procedures. B Illustrates the marginal
likelihood manifolds for choices and RTs, by varying one parameter in the trained region. Reaction
times are mirrored for choice options −1, and 1 respectively, to aid visualization. C shows MLP
likelihoods in green for four random parameter vectors, overlaid on top of a sample of 100 KDE-based
empirical likelihoods derived from 100k samples each. The MLP mirrors the KDE likelihoods despite
not having been explicitly trained on these parameters. Moreover, the MLP likelihood sits firmly at
the mean of sample of 100 KDE’s. Negative and positive reaction times are to be interpreted as for
B.

fluctuations in the KDE empirical likelihoods across separate simulation runs of 100K samples each).
This observation can also be gleaned from Figure 3.4C, which shows the learned likelihood to sit
right at the center of sampled KDEs (note that for each subplot 100 such KDEs were used). As
illustrated in the appendix, these observations hold across all tested models. One perspective on
this is to consider the MLP-likelihoods as equivalent to KDE likelihoods derived from a much larger
number of underlying samples and interpolated. The results for the CNN (not shown to avoid
redundancy) mirror the MLP results. Finally, while Figure 3.4 depicts the learned likelihood for
the simple DDM for illustration purposes, the same conclusions apply to the learned manifolds for
all of the tested models (as shown in the appendix Figures 3.13–3.18). Indeed inspection of those
manifolds is insightful for facilitating interpretation of the dynamics of the underlying models, how
they differ from each other, and the corresponding RT distributions that can be captured.
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3.5.2 Parameter Recovery

Benchmark: Analytical Likelihood Available

While the above inspection of the learned manifolds is promising, a true test of the method is to
determine whether one can perform proper inference of generative model parameters using the MLP
and CNN. Such parameter recovery exercises are typically performed to determine whether a given
model is identifiable for a given experimental setting (e.g., number of trials, conditions, etc). Indeed,
when parameters are collinear, recovery can be imperfect even if the estimation method itself is
flawless (Wilson and Collins, 2019; Nilsson, Rieskamp, and Wagenmakers, 2011; N. D. Daw et al.,
2011). A Bayesian estimation method, however, should properly assign uncertainty to parameter
estimates in these circumstances, and hence it is also important to evaluate the posterior variances
over model parameters.

Thus as a benchmark, we first consider the basic DDM for which an arbitrarily close approximation
to the analytic likelihood is available (Navarro and Fuss, 2009). This benchmark allows us to compare
parameter recovery given (1) the analytic likelihood, (2) an approximation to the likelihood specified
by training an MLP on the analytical likelihood (thus evaluating the potential loss of information
incurred by the MLP itself), (3) an approximation to the likelihood specified by training an MLP on
KDE-based empirical likelihoods (thus evaluating any further loss incurred by the KDE reconstruction
of likelihoods), and (4) an approximate likelihood resulting from training the CNN architecture, on
empirical histograms. Figure 3.5 shows the results for the DDM.

For the simple DDM and analytic likelihood, parameters are nearly perfectly recovered given
N = 1024 data points ("trials") (Figure 3.5A). Notably, these results are mirrored when recovery is
performed using the MLP trained on the analytic likelihood (Figure 3.5B). This finding corroborates,
as visually suggested by the learned likelihood manifolds, the conclusion that globally the likelihood
function was well behaved. Moreover, only slight reductions in recoverability were incurred when
the MLP was trained on the KDE likelihood estimates (Figure 3.5C), likely due to the known small
biases in KDE itself (Turner, Van Maanen, and Forstmann, 2015a). Similar performance is achieved
using the CNN instead of MLP (Figure 3.5 D).

As noted above, an advantage of Bayesian estimation is that we obtain an estimate of the posterior
uncertainty in estimated parameters. Thus, a more stringent requirement is to additionally recover
the correct posterior variance, for a given dataset D and model M. One can already see visually in
Figure 3.5C, D that posterior uncertainty is larger when the mean is further from the ground truth
(lighter shades of grey indicate higher posterior variance). However to be more rigorous one can
assess whether the posterior variance is precisely what it should be.

The availability of an analytical likelihood for the DDM, together with our use of sampling
methods (as opposed to variational methods which can severely bias posterior variance), allows us to
obtain the "ground truth" uncertainty in parameter estimates. Figure 3.6 shows that the sampling
from a MLP trained on analytical likelihoods, a MLP trained on KDE-based likelihoods and a CNN
all yield excellent recovery of the variance. For an additional run that involved datasets of size
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Figure 3.5. Simple DDM Parameter recovery results for, A analytic likelihood (ground truth), B
MLP trained on analytic likelihood, C MLP trained on KDE-based likelihoods (100K simulations
per KDE), D CNN trained on binned likelihoods. The results represent posterior means, based
on inference over datasets of size N1 = 1024 "trials". Dot shading is based on parameter-wise
normalized posterior variance, with lighter shades indicating larger posterior uncertainty of the
parameter estimate.

n = 4096 instead of n = 1024, we observed a consistent decrease in posterior variance across all
methods (not shown) as expected.

No Analytical Likelihood Available

As a proof of concept for the more general ABC setting, we show parameter recovery results for two
non-standard models, the LC and WEIBULL models as described in the the Test Bed section. The
results are summarized in Figure 3.7 and 3.8 and described in more detail in the following two
paragraphs.
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Figure 3.6. Inference using LANs recovers posterior uncertainty. Here we leverage the analytic
solution for the DDM to plot the “ground truth" posterior variance on the x-axis, against the posterior
variance from the LANs on the y-axis. Left. MLPs trained on the analytic likelihood. Middle. MLPs
trained on KDE-based emprical likelihoods. Right. CNNs trained on binned empirical likelihoods.
Datasets were equivalent across methods for each model (left to right) and involved n = 1024 samples.

Figure 3.7. LC model parameter recovery and posterior predictives. Left. Parameter recovery
results for the MLP (top) and CNN (bottom). Right. Posterior predictive plots for two representative
datasets. Model samples of all parameters (black) match those from the true generative model (red),
but one can see that for the lower dataset, the bound trajectory is somewhat more uncertain (more
dispersion of the bound). In both cases, the posterior predictive (black histograms) is shown as
predicted choice proportions and RT distributions for upper and lower boundary responses, overlaid
on top of the ground truth data (red; hardly visible since overlapping / matching).

Parameter Recovery Figure 3.7 shows that both the MLP and CNN methods consistently
yield very good to excellent parameter recovery performance for the LC model, with parameter-wise
regression coefficients globally above R2 > 0.9. As shown in Figure 3.8 parameter recovery for the
WEIBULL model, is less successful however, particularly for the weibull collapsing bound parameters.
The drift parameter v, the starting point bias w and the non-decision time are estimated well, however
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Figure 3.8. WEIBULL model parameter recovery and posterior predictives.Left. Parameter
recovery results for the MLP (top) and CNN (bottom). Right. Posterior predictive plots for
two representative datasets in which parameters were poorly estimated (denoted in blue on the
left). In these examples, model samples (black) recapitulate the generative parameters (red) for the
non-boundary parameters, the recovered bound trajectory is poorly estimated relative to the ground
truth, despite excellent posterior predictives in both cases (RT distributions for upper and lower
boundary, same scheme as Figure 3.7). Nevertheless, one can see that the net decision boundary is
adequately recovered within the range of the RT data that are observed. Across all datasets, the
net boundary B(t) = a ∗ exp

(
− t

β

α
)

is well recovered within the range of the data observed, and
somewhat less so outside of the data, despite poor recovery of individual Weibull parameters α and
β.

the boundary parameters a, α and β are less well recovered by the posterior mean. Judging by the
parameter recovery plot, the MLP seems to perform slightly less well on the boundary parameters
when compared to the CNN.

To interrogate the source of the poor recovery of α and β parameters, we considered the possibility
that the model itself may have issues with identifiability, rather than poor fit. Figure 3.8 shows
that indeed, for two representative datasets in which these parameters are poorly recovered, the
model nearly perfectly reproduces the ground truth data in the posterior predictive RT distributions.
Moreover, we find that whereas the individual Weibull parameters are poorly recovered, the net
boundary B(t) is very well recovered, particularly when evaluated within the range of the observed
dataset. This result is reminiscent of the literature on sloppy models (Gutenkunst et al., 2007),
where sloppiness implies that various parameter configurations can have the same impact on the
data. Moreover, two further conclusions can be drawn from this analysis. First, when fitting the
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WEIBULL model, researchers should interpret the bound trajectory as a latent parameter rather
than the individual α and β parameters per se. Second, the WEIBULL model may be considered as
viable only if the estimated bound trajectory varies sufficiently within the range of the empirical RT
distributions. If the bound is instead flat or linearly declining in that range, the simple DDM or LC
models may be preferred, and their simpler form would imply that they would be selected by any
reasonable model comparison metric. Lastly, given our results the WEIBULL model could likely
benefit from re-parameterization if the desire is to recover individual parameters rather than the
bound trajectory B(t). Given the common use of this model in collapsing bound studies (Hawkins
et al., 2015) and that the bound trajectories are nevertheless interpretable, we leave this issue for
future work.

The appendix shows parameter recovery studies on a number of other stochastic simulators
with non-analytic likelihoods, described in the Test Bed section. The appendices show tables of
parameter wise recovery R2 for all models tested. In general, recovery ranges from good to excellent.
Given the WEIBULL results above, we attribute the less good recovery for some of these models
to identifiability issues and specific dataset properties rather than to the method per se. We note
that our parameter recovery studies here are in general constrained to the simplest inference setting
equivalent to a single subject, single condition experimental design. Moreover we use uninformative
priors for all parameters of all models. Thus these results provide a lower bound on parameter
recoverability, provided of course that the datasets were generated from the valid parameter ranges
on which the Networks were trained; please see section 3.5.4 for how recovery can benefit from more
complex experimental designs with additional task conditions, which more faithfully represents the
typical inference scenario deployed by cognitive neuroscientists. Lastly, some general remarks about
the parameter recovery performance. A few factors can negatively impact how well one can recover
parameters. First, if the model generally suffers from identifiability issues, the resulting trade-offs in
the parameters can lead the MCMC chain to get stuck on the boundary for one or more parameters.
This issue is endemic to all models and unrelated to likelihood free methods or LANs, and should
at best be attacked at the level of reparameterization (or a different experimental design that can
disentangle model parameters). Second, if the generative parameters of a dataset are too close to (or
beyond) the bounds of the trained parameter space we may also end with a chain that gets stuck on
the boundary of the parameter space. We confronted this problem by training on parameter spaces
that yield response time distributions that are broader than typically observed experimentally for
models of this class, while also excluding obviously defective parameter setups. Defective parameter
setups were defined in the context of our applications as parameter vectors which generate data
that never allow one or the other choice to occur (as in p(c) << 1

100,000 , data which concentrates
more than half of the reaction times within a single 1ms bin and data that generated mean reaction
times beyond 10s. These guidelines were chosen as a mix of basic rationale and domain knowledge
regarding usual applications of DDMs to experimental data. As such, the definition of defective data
may depend on the model under consideration.
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3.5.3 Runtime

A major motivation for this work is the amortization of network training time during inference,
affording researchers the ability to test a variety of theoretically interesting models for linking brain
and behavior without large computational cost. To quantify this advantage we provide some results
on the posterior sampling run-times using (1) the MLP with Slice Sampling (Neal, 2003) and (2)
CNN with iterated importance sampling.

The MLP timings are based on slice sampling (Neal, 2003), with a minimum of n = 2000 samples.
The sampler was stopped at some n >= 2000, for which the Geweke statistic (Geweke, 1992) indicated
convergence (the statistic was computed once every 100 samples for n >= 2000). Using an alternative
sampler, based on DEMCMC and stopped when the Gelman Rubin R̂ < 1.1 (Gelman, Rubin, et al.,
1992) yielded very similar timing results and was omitted in our figures.

For the reported importance sampling runs we used 200K importance samples per iteration,
starting with γ values of 64, which was first reduced to 1 where in iteration i, γi = 64

2i−1 , before a
stopping criterion based on relative improvement of the confusion metric was used.

Figure 3.9A shows that all models can be estimated in the order of hundreds of seconds (minutes),
comprising a speed improvement of at least two orders of magnitude compared to traditional ABC
methods using KDE during inference (i.e., the PDA method motivating this work (Turner, Van
Maanen, and Forstmann, 2015a)). Indeed, this estimate is a lower bound on the speed-improvement:
we extrapolate only the observed difference between network evaluation and online simulations,
ignoring the additional cost of constructing and evaluating the KDE-based likelihood. We decided to
use this benchmark because it provides a fairer comparison to more recent PDA approaches in which
the KDE evaluations can be sped up considerably Holmes, 2015.

Notably, due to its potential for parallelization (especially on GPUs), our neural network methods
can even induce performance speed-ups relative to analytic likelihood evaluations. Indeed, figure
3.9B shows that as the dataset grows, runtime is significantly faster than even a highly optimized
cython implementation of the Navarro Fuss algorithm (Navarro and Fuss, 2009) for evaluation of the
analytic DDM likelihood. This is also noteworthy in light of the Full-DDM model (as described in
the test-bed section), for which it is currently common to compute the likelihood term via quadrature
methods, in turn based on repeated evaluations of the Navarro Fuss algorithm. This can easily
inflate the evaluation time by 1 to 2 orders of magnitude. In contrast, evaluation times for the MLP
and CNN are only marginally slower (as a function of the slightly larger network size in response
to higher dimensional inputs). We confirm (omitted as separate Figure) from experiments with
the HDDM python toolbox, that our methods end up approximately 10 − 50 times faster for the
Full-DDM than the current implementation based on numerical integration, maintaining comparable
parameter recovery performance. We strongly suspect there to be additional remaining potential for
performance optimization.

94



Figure 3.9. A Comparison of sampler timings for the MLP and CNN methods, for datasets of
size 1024 and 4096 (respectively MLP-1024, MLP-4096, CNN-1024, CNN-4096). For comparison,
we include a lower bound estimate of the sample timings using traditional PDA approach during
online inference (using 100k online simulations for each parameter vector).100K simulations were
used because we found this to be required for sufficiently smooth likelihood evaluations and is the
number of simulations used to train our networks; fewer samples can of course be used at the cost of
worse estimation, and only marginal speed up since the resulting noise in likelihood evaluations tends
to prevent chain-mixing; see Holmes, 2015). We arrive at 100k seconds via simple arithmetic. It took
our slice samplers on average approximately 200k likelihood evaluations to arrive at 2000 samples
from the posterior. Taking 500ms ∗ 200000 gives the reported number. Note that this is a generous
but rough estimate, since the cost of data-simulation varies across simulators (usually quite a bit
higher than the DDM simulator). Note further that these timings scale linearly with the number
of participants and task conditions for the online method, but not for LANs, where they can be in
principle be parallelized. B Compares the timings for obtaining a single likelihood evaluation for a
given dataset. MLP and CNN refer to Tensorflow implementations of the corresponding networks.
Navarro Fuss, refers to a cython (Behnel et al., 2010) (cpu) implementation of the algorithm suggested
Navarro and Fuss, 2009 for fast evaluation of the analytical likelihood of the DDM. 100k-sim refers
to the time it took a highly optimized cython (cpu) version of a DDM-sampler to generate 100k
simulations (averaged across 100 parameter vectors).

3.5.4 Hierarchical inference

One of the principal benefits of LANs is that they can be directly extended – without further training
– to essentially arbitrary hierarchical inference scenarios, including those in which (i) individual
participant parameters are drawn from group distributions; (ii) some parameters are pooled and
others separated across task conditions and (iii) neural measures are estimated as regressors on
model parameters (Figure 3.10). Hierarchical inference is critical for improving parameter estimation
particularly for realistic cognitive neuroscience datasets in which thousands of trials are not available
for each participant, and/or where one estimates impacts of noisy physiological signals onto model
parameters (Wiecki, Sofer, and Frank, 2013; Boehm et al., 2018; Vandekerckhove, Tuerlinckx, and
Lee, 2011; Ratcliff and Childers, 2015).

To provide a proof of concept, we developed an extension to the HDDM python toolbox (Wiecki,
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Figure 3.10. Illustrates common inference scenarios applied in the cognitive neurosciences and
enabled by our amortization methods. The figure uses standard plate notation for probabilistic
graphical models. White single circles represent random variables, white double circles represent
variables computed deterministically from their inputs, and grey circles represent observations. For
illustration we split the parameter vector of our simulator model (which we call θ in the rest of
the paper) into two parts θ and λ, since some but not all parameters may sometimes vary across
conditions and / or come from global distribution. (Upper left) basic hierarchical model across M
participants, with N observations (trials) per participant. Parameters for individuals are assumed to
be drawn from group distributions. (Upper right) hierarchical models which further estimate the
impact of trial-wise neural regressors onto model parameters. (Lower left) non-hierarchical, standard
model estimating one set of parameters across all trials. (Lower right), common inference scenario in
which a subset of parameters (θ) are estimated to vary across conditions M, while others (λ) are
global. LANs can be immediately re-purposed for all of these scenarios (and more) without further
training.

Sofer, and Frank, 2013), widely used for hierarchical inference of the DDM applied to such settings.
Lifting the restriction of previous versions of HDDM to only DDM variants with analytical likelihoods,
we imported the MLP likelihoods for all two-choice models considered in this paper. Note that
GPU-based computation is supported out of the box, which can easily be exploited with minimal
overhead using free versions of Google’s Colab notebooks. We generally observed GPUs to improve
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Figure 3.11. Hierarchical inference results using the MLP likelihood imported into the HDDM
package. A posterior inference for the LC model on a synthetic dataset with 5 participants and
500 trials each. Posterior distributions are shown with caterpillar plots (thick lines correspond to
5 − 95 percentiles, thin lines correspond to 1 − 99 percentiles) grouped by parameters (ordered
from above {subject1, ..., subjectn, µgroupσgroup}). Ground truth simulated values denoted in red. B
Hierarchical inference for synthetic data comprising 20 participants and 500 trials each. µ and σ
indicate the group level mean and variance parameters. Estimates of group level posteriors improve
with more participants as expected with hierarchical methods. Individual level parameters are highly
accurate for each participant in both scenarios.

speed approximately five-fold over CPU-based setups for the inference scenarios we tested 2.
Figure 3.11 shows example results from hierarchical inference using the LC model, applied to

synthetic datasets comprising 5 and 20 subjects (a superset of participants). Recovery of individual
parameters was adequate even for 5 participants, and we also observe the expected improvement of
recovery of the group level parameters µ and σ for 20 participants.

Figure 3.12 shows an example that illustrates how parameter recovery is affected when a dataset
contains multiple experimental conditions (e.g., different difficulty levels). It is common in such
scenarios to allow task conditions to affect a single (or subset) of model parameters (in the cases
shown: v), while other model parameters are pooled across conditions. As expected, for both the
Full-DDM (panel A) and the Levy model (panel B), the estimation of global parameters is improved

2Preliminary access to this interface and corresponding instructions can be found under https://github.com/
lnccbrown/lans/tree/master/hddmnn-tutorial.
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Figure 3.12. Effect of multiple experimental conditions on inference. The panel shows an example
of posterior inference for 1, (left), 5 (middle) and 10 (right) conditions. A and B, refer to the
Full-DDM and Levy models respectively. The drift parameter v is estimated to vary across conditions,
while the other parameters are treated as global across conditions. Inference tends to improve for all
global parameters when adding experimental conditions. Importantly this is particularly evident for
parameters that are otherwise notoriously difficult to estimate, such as sv (trial by trial variance in
drift in the Full-DDM model) and α (the noise distribution in the Levy model). Red stripes show
the ground truth values of the given parameters.

when increasing the number of conditions from 1 to 5 to 10 (left to right, where the former are
subsets of the latter datasets. These experiments confirm that one can more confidently estimate
parameters that are otherwise difficult to estimate, such as the noise α in the Levy model and sv the
standard deviation of the drift in the Full-DDM.

Both of these experiments provide evidence that our MLPs provide approximate likelihoods which
behave in accordance with what is expected from proper analytic methods, while also demonstrating
their robustness to other samplers (i.e., we used HDDM slice samplers without further modification
for all models).

We expect that proper setting of prior distributions (uniform in our examples) and further
refinements to the slice sampler settings (to help mode discovery), can improve these results even
further. We include only the MLP method in this section, since it is most immediately amenable
to the kind of trial-by-trial level analysis that HDDM is designed for. We plan to investigate the
feasibility of including the CNN method into HDDM in future projects.
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3.6 Discussion

Our results demonstrate the promise and potential of amortized likelihood approximation networks for
Bayesian parameter estimation of neurocognitive process models. Learned manifolds and parameter
recovery experiments showed successful inference using a range of network architectures and posterior
sampling algorithms, demonstrating the robustness of the approach.

Although these methods are extendable to any model of similar complexity, we focused here on
a class of sequential sampling models, primarily because the most popular of them – the DDM –
has an analytic solution, and is often applied to neural and cognitive data. Even slight departures
from the standard DDM framework (e.g., dynamic bounds, or changes in the noise distribution) are
often not considered for full Bayesian inference due to the computational complexity associated with
traditional ABC methods. We provide access to the learned likelihood functions (in the form of
network weights) and code to enable users to fit a variety of such models with orders of magnitude
speed up (minutes instead of days). In particular, we provided an extension to the commonly used
HDDM toolbox (Wiecki, Sofer, and Frank, 2013) that allows users to apply these models to their
own datasets immediately. We also provide access to code that would allow users to train their own
likelihood networks and perform recovery experiments, which can then be made available to the
community.

We offered two separate approaches with their own relative advantages and weaknesses. The MLP
is suited for evaluating likelihoods of individual observations (choices, response times) given model
parameters, and as such can be easily extended to hierarchical inference settings and trial-by-trial
regression of neural activity onto model parameters. We showed that importing the MLP likelihood
functions into the HDDM toolbox affords fast inference over a variety of models without tractable
likelihood functions. Moreover, these experiments demonstrated that use of the neural network
likelihoods even confers a performance speed up over the analytic likelihood function – particularly
for the Full-DDM, which otherwise required numerical methods on top of the analytic likelihood
function for the simple DDM.

Conversely, the CNN approach is well suited for estimating likelihoods across parameters for
entire datasets in parallel, as implemented with importance sampling. More generally and implying
potential further improvements, any Sequential Monte Carlo (SMC) method may be applied instead.
These methods offer a more robust path to sampling from multimodal posteriors compared to
MCMC, at the cost of the curse of dimensionality, rendering them potentially less useful for highly
parameterized problems, such as those that require hierarchical inference. Moreover, representing
the problem directly as one of learning probability distributions, and enforcing the appropriate
constraints by design endows the CNN approach with a certain conceptual advantage. Finally we
note that in principle (with further improvements) trial-level inference is possible with the CNN
approach, and vice-versa, importance sampling can be applied to the MLP approach.

In this work, we employed sampling methods (MCMC and importance sampling) for posterior
inference, because in the limit they are well known to allow for accurate estimation of posterior
distributions on model parameters, including not only mean estimates but their variances and
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covariances. Accurate estimation of posterior variances is critical for any hypothesis testing scenario,
because it allows one to be confident about the degree of uncertainty in parameter estimates. Indeed,
we showed that for the simple DDM, we found that posterior inference using our networks yielded
nearly perfect estimation of the variances of model parameters (which are available due to the analytic
solution). Of course, our networks can also be deployed for other estimation methods even more
rapidly: they can be immediately used for maximum likelihood estimation via gradient descent, or
within other approximate inference methods, such as variational inference (see Acerbi, 2020 for a
related approach).

Other approaches exist for estimating generalized diffusion models. A recent example, not
discussed thus far, is the pyDDM Python toolbox (Shinn, Lam, and J. D. Murray, 2020), which
allows maximum likelihood estimation of generalized drift diffusion models (GDDM). The underlying
solver is based on the Fokker-Planck equations, which allow access to approximate likelihoods (where
the degree of approximation is traded off with computation time / discretization granularity) for a
flexible class of diffusion-based models, notably allowing arbitrary evidence trajectories, starting point
and non-decision time distributions. However, to incorporate trial-by-trial effects would severely
inflate computation time (on the order of the number of trials), since the solver would have operate
on a trial by trial level. Moreover, any model that is not driven by Gaussian Diffusion, such as the
Levy model we considered here, or the linear ballistic accumulator, is out of scope with this method.
In contrast LANs can be trained to estimate any such model, limited only by the identifiability
of the generative model itself. Finally, pyDDM does not afford full Bayesian estimation and thus
quantification of parameter uncertainty and covariance.

We moreover note that our LAN approach can be useful even if the underlying simulation model
admits other likelihood approximations, regardless of trial-by-trial effect considerations, since a
forward pass through a LAN may be speedier. Indeed, we observed substantial speed ups in HDDM
for using our LAN method to the full DDM, for which numerical methods were previously needed to
integrate over inter-trial variability.

We emphasize that our test-bed application to sequential sampling models does not delimit the
scope of application of LANs. Neither are reasonable architectures restricted to MLPs and CNNs (see
Lueckmann et al., 2019b; Papamakarios, Sterratt, and I. Murray, 2019 for related approaches which
use completely different architectures). Models with high-dimensional (roughly > 15) parameter
spaces may present a challenge for our global amortization approach, due to the curse of dimensionality.
Further, models with discrete parameters of high cardinality may equally present a given network
with training difficulties. In such cases other methods may be preferred over likelihood amortization
generally (e.g., Acerbi, 2020), given that this is an open and active area of research we can expect
surprising developments which may do in fact turn the tide again in the near future.

Despite some constraints this still leaves a vast array of models in reach for LANs, of which our
test-bed can be considered only a small beginning.

By focusing on likelihood approximation networks, our approach affords the flexibility of networks
serving as plug-ins for hierarchical or arbitrarily complex model extensions. In particular, the
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networks can be immediately transferred, without further training, to essentially arbitrary inference
scenarios in which researchers may be interested in evaluating links between neural measures and
model parameters, and to compare various assumptions about whether parameters are pooled and
split across experimental manipulations. This flexibility in turn sets our methods apart from other
amortization and neural network based ABC approaches offered in the statistics, machine learning and
computational neuroscience literature (Papamakarios and I. Murray, 2016; Papamakarios, Nalisnick,
et al., 2019; Gonçalves et al., 2020; Lueckmann et al., 2019a; S. T. Radev, Mertens, Voss, and Köthe,
2020; S. T. Radev, Mertens, Voss, Ardizzone, et al., 2020) , while staying conceptually extremely
simple. Instead of focusing on extremely fast inference for very specialized inference scenarios, our
approach focuses on achieving speedy inference while not implicitly compromising modeling flexibility
through amortization step.

Closest to our approach is the work of Lueckmann et al., 2019b, and Papamakarios, Sterratt,
and I. Murray, 2019, both of which attempt to target the likelihood with a neural density estimator.
While flexible, both approaches imply the usage of summary statistics, instead of a focus on trial-wise
likelihood functions. Our work can be considered a simple alternative with explicit focus on trial-wise
likelihoods.

Besides deep learning based approaches, another major machine learning inspired branch of the
ABC literature, concerns log-likelihood and posterior approximations via Gaussian Process Surrogates
(GPSs) (Meeds and Welling, 2014; Järvenpää et al., 2018; Järvenpää et al., 2021; Acerbi, 2020). A
major benefit of GPSs lies in the ability for clever training data selection via active learning, since
such GPSs allow uncertainty quantification out of the box, which in turn can be utilized for the
purpose of targeting high uncertainty regions in parameter space. GPS based computations scale
with the number of training examples however, which make them much more suitable for minimizing
the computational cost for a given inference scenario, than facilitating global amortization as we
suggest in this paper (for which one usually need larger sets of training data than can traditionally
be handled efficiently by GPS). Again when our approach is applicable, it will offer vastly greater
flexibility, once a LAN is trained.

3.7 Limitations and Future Work

There are several limitations of the methods presented in this article, which we hope to address in
future work. While allowing for great flexibility, the MLP approach suffers from the drawback that
we don’t enforce (or exploit) the constraint that ℓ̂(θ|x) is a valid probability distribution, and hence
the networks have to learn this constraint implicitly and approximately. Enforcing this constraint,
has the potential to improve estimation of tail probabilities (a known issue for KDE approaches to
ABC more generally (Turner, Van Maanen, and Forstmann, 2015a)).

The CNN encapsulation exploits the fact that
∫

X ℓ̂(θ|x)dx = 1, however makes estimation of
trial-by-trial effects more resource hungry. We plan to investigate the potential of the CNN for
trial-by-trial estimation in future research.
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A potential solution that combines the strengths of both the CNN and MLP methods, is
to utilize Mixture Density Networks to encapsulate the likelihood functions. We are currently
exploring this avenue. Mixture density networks have been successfully applied in the context of
ABC (Papamakarios and I. Murray, 2016), however training can be unstable without extra care
(Guillaumes, 2017). Similarly, invertible flows (Rezende and Mohamed, 2015) and / or mixture
density networks Bishop, 1994 may be used to learn likelihood functions (Papamakarios, Sterratt, and
I. Murray, 2019; Lueckmann et al., 2019b), however the philosophy remains focused on distributions
of summary statistics for single datasets. While impressive improvements have materialized at the
intersection of ABC and Deep Learning methods (Papamakarios, Nalisnick, et al., 2019; Greenberg,
Nonnenmacher, and Macke, 2019; Gonçalves et al., 2020) (showing some success with posterior
amortization for models up to 30 parameters,but restricted to a local region of high posterior density
in the resulting parameter space), generally less attention has been paid to amortization methods that
are not only of case-specific efficiency but sufficiently modular to serve a large variety of inference
scenarios (e.g., Figure 3.10). This is an important gap, which we believe the popularization of
the powerful ABC framework in the domain of experimental science hinges upon. A second, and
short-term avenue for future work is the incorporation of our presented methods into the HDDM
Python Toolbox (Wiecki, Sofer, and Frank, 2013) to extend its capabilities to a larger variety of
SSMs. Initial work in this direction is completed, alpha version of the extension being available in
form of a tutorial under https://github.com/lnccbrown/lans/tree/master/hddmnn-tutorial.

Our current training pipeline can be further optimized on two fronts. First, no attempt was
made to minimize the size of the network needed to reliably approximate likelihood functions so as
to further improve computational speed. Second, little attempt was made to optimize the amount
of training provided to networks. For the models explored here, we found it sufficient to simply
train the networks for a very large number of simulated datapoints such that interpolation across
the manifold was possible. However, as model complexity increases, it would be useful to obtain a
measure of the networks’ uncertainty over likelihood estimates for any given parameter vector. Such
uncertainty estimates would be beneficial for multiple reasons. One such benefit would be to provide
a handle on the reliability of sampling, given the parameter region. Moreover, such uncertainty
estimates could be used to guide the online generation of training data to train the networks in
regions with high uncertainty. At the intersection of ABC and Neural Networks active learning has
been explored via uncertainty estimates based on network ensembles (Lueckmann et al., 2019a). We
plan to additionally explore the use of Bayesian neural networks, which provide uncertainty over
their weights, for this purpose (Neal, 1995).

One more general shortcoming of our methods is the reliance on empirical likelihoods for training,
which in turn are based on a fixed number of samples across parameter vectors, just as the PDA
method proposed by Turner, Van Maanen, and Forstmann, 2015a. Recently this approach has
been criticized fundamentally on grounds of producing bias in the generated KDE based likelihood
estimates (Opheusden, Acerbi, and Ma, 2020). A reduction of the approximate likelihood problem
to one of inverse binomial sampling was proposed (Opheusden, Acerbi, and Ma, 2020), which will
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generate unbiased likelihood estimates. To address this concern, we will investigate adaptive strategies
for the selection of the simulations count n. We however highlight two points here which aim to put
the promise of unbiased likelihoods in perspective. First, our networks add interpolation to the actual
estimation of a likelihood. Likelihoods close in parameter space therefore share information, which
translates into an effectively higher simulation count than the 100k chosen to construct each empirical
likelihood used for training. Quantifying this benefit precisely we leave for future research, however
we suspect, as suggested by Figure 3.4, that it may be substantial. Second, while we generally
acknowledge that bias in the tails remains somewhat of an issue in our approach, resolution is at best
partial even in the proposed methods of (Opheusden, Acerbi, and Ma, 2020). For the estimation
of parameters for which a given datapoint is extremely unlikely (i.e., the data is generally unlikely
under the model), the authors suggest to threshold the simulation count so that their algorithm
is guaranteed to stop. This effectively amounts to explicitly allowing for bias again. As another
alternative the authors suggest to introduce a lapse rate in the generative model, which the LAN
approach can accommodate as well. However the introduction of a lapse rate doesn’t deal with tail
events directly either, but rather assumes that tail events are unrelated to the process of interest.
This in turn will render a lower but fixed number of simulations N feasible for training LANs as
well. This is notwithstanding the desirable minimization of simulation times even for high likelihood
events, especially when trial wise simulations are in fact necessary ( which tends to be in cases
where amortization with LANs is a priori not a good computational strategy to begin with ). Hence,
although the inverse binomial sampling approach is elegant conceptually, excessive computation
remains an issue when we need accurate estimates of the probability of actual tail-events. Generally
however, we maintain it desirable and important for future work to make use of the otherwise great
potential of adaptive sampling to minimize total computational cost.

Furthermore we relegate to future research proper exploitation of the fact that LANs are by
design differentiable in the parameters. We are currently working on an integration of LANs with
tensorflow probability (Abadi et al., 2016), utilizing autograd to switch our MCMC method to the
gradient-based NUTS sampler (Hoffman and Gelman, 2014). Main benefits of this sampler are robust
mixing behavior, tolerance for high levels of correlations in the parameter space, while at the same
time maintaining the ability to sample from high dimensional posteriors. High level of correlations in
posteriors are traditionally an Achilles heel of the otherwise robust coordinate wise slice samplers.
DEMCMC and Iterated Importance samplers are somewhat more robust in this regards, however
both may not scale efficiently to high dimensional problems. Robustness concerns aside, initial
numerical results additionally show some promising further speed-ups.

Another important branch for future work lies in the utilization of LANs for model comparison.
Initial results are promising in that we obtained satisfactory model recovery using the Deviance
Information Criterion (DIC) used for model selection in the standard HDDM package. However this
issue demands much more attention to evaluate other model selection metrics and extensive further
numerical experiments, which we relegate to future work.

Lastly, in contrast to the importance sampler driving the posterior inference for the CNN, we
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believe that some of the performance deficiencies of the MLP, are the result of our Markov Chains not
having converged to the target distribution. A common problem seems to be that the sampler hits
the bounds of the constrained parameter space and does not recover from that. As we show in Figure
3.7 and Figure 3.8, even ostensibly bad parameter recoveries follow a conceptual coherence and lead
to good posterior predictive performance. We therefore may be under-reporting the performance of
the MLP and plan to test the method on an even more comprehensive suite of MCMC samplers,
moreover including thus far neglected potential for re-parameterization.
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3.8 Materials and Methods

3.8.1 Test-Beds

General Information

All models were simulated using the Euler-Maruyama method, which for some fixed discretization
step-size ∆t, evolves the process as,

Xt+∆t = Xt + a(t, x)∆t + b(t, x)∆B

where the definition of ∆B depends on the noise process. For simple Brownian Motion this
translates into Gaussian displacements, specifically ∆B ∼ N (0, ∆t), which is commonly denoted as
dW. More generally the noise need not be Gaussian, and indeed we later apply our methods to the
Levy Flight model for which the noise process is an alpha stable distribution, denoted as Lα s.t.
∆Lα ∼ (∆t) 1

α L(α, 0, 1, 0).
The models chosen for our test-bed systematically vary different aspects of complexity, as

illustrated in 3.3. The DDM provides a benchmark and a sanity check since we can compute its
likelihood analytically. The Full-DDM provides us with a model for which analytical computations
are still based on the analytical likelihood of the DDM, however evaluation is slowed by the necessity
for numerical integration. This forms a first test for the speed of evaluation of our methods. For the
Ornstein Uhlenbeck, Levy, Race and DDM with parameterized boundary models we cannot base our
calculations on an analytical likelihood, but we can nevertheless perform parameter recovery and
compare to other methods that utilize empirical likelihoods. The Ornstein Uhlenbeck Model adds
state-dependent behavior to the diffusion while the Levy Model adds variation in the noise process
and the Race Models expand the output dimensions according to the number of choices.
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Full Drift Diffusion Model

The Full Drift Diffusion Model (Full-DDM) maintains the same specification for the driving SDE,
but also allows for trial-to-trial variability in three parameters (Ratcliff and McKoon, 2008). We
allow the drift rate v to vary trial by trial, according to a normal distribution, v ∼ N (0, σv), the
non-decision-time τ to vary according to a uniform distribution τ ∼ U[−ϵτ , ϵτ ] and the starting point
w to vary according to a uniform distribution as well w ∼ U[−ϵw, ϵw]. The parameter vector for the
Full-DDM model is then θ = (v, a, w, τ, σv, ϵτ , ϵw).

To calculate the FPTD for this model, we can use the analytical likelihood expression from the
DDM. However, we need to use numerical integration to take into account the random parame-
ters (Wiecki, Sofer, and Frank, 2013). This inflates execution time by a factor equivalent to the
number of executions needed to compute the numerical integral.

Ornstein Uhlenbeck Model

The Ornstein Uhlenbeck model introduces a state-dependency on the drift rate v. Here a(t, x) =
v + g ∗ x, where g is an inhibition / excitation parameter. If g < 0 it acts as a leak (the particle is
mean reverting). If g > 0 the particle accelerates away from the 0 state, as in an attractor model. At
g = 0 we recover the simple DDM process. This leaves us with a parameter vector θ = (v, a, w, τ, g).
The corresponding SDE is defined as,

dXτ+t = (v + g ∗Xt) dt + dW, Xτ = w

This model does not have an analytical likelihood function that can be employed for cheap
inference (Mullowney and Iyengar, 2006). We discuss alternatives, other than our proposed methods,
to simple analytical likelihoods later. For our purposes approximate inference is necessary for this
model. 3.

Levy Flights

The Levy Flight (Wieschen, Voss, and S. Radev, 2020; Reynolds and Rhodes, 2009) model dispenses
with the Gaussian noise assumption in that the incremental noise process instead follows an alpha-
stable distribution Lα. Specifically, we consider distributions L(α, 0, 1, 0) which are centered at 0,
symmetric and have unitary scale parameter. These distributions have a first moment for α ∈ (1, 2],
but infinite variance for α < 2. An important special case is α = 2, where L(2, 0, 1, 0) = N (0, 2).
The parameter vector for this process is θ = (v, a, w, τ, α). We fix a(t, x) = v and b(t, x) = 1. The
SDE is defined as,

dXτ+t = v dt + dLα, Xτ = w

3The Ornstein Uhlenbeck model is usually defined only for g < 0, our parameter space makes it strictly speaking a
relaxation
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The Levy Flight is a flexible model used across disciplines for some of its theoretical optimality
properties (Wosniack et al., 2017) despite not possessing closed-form FPTD’s. We add it here, as it is
different from the other models under consideration; in principle, it could also capture decision-making
scenarios in which there are sudden jumps in the accumulation of evidence (e.g., due to internal
changes in attention). Its behavior is shaped by altering the properties of the incremental noise
process directly.

Parameterized Collapsing Decision Bounds

We will consider variations of the DDM in which the decision boundary is not fixed but is time-varying
(represented by a boundary parameter a with a parameterized boundary function h(t; θh)). In such
cases we augment the parameter vector θ with the set θh and drop a. Such variations are optimal in
a variety of settings (for example, when there are response deadlines (Frazier and Angela, 2008) or
distributions of trial-types with different difficulties (Malhotra et al., 2018; Palestro et al., 2018)),
and also better reflect the underlying dynamics of decision bounds within biologically inspired neural
models (O’Reilly and Frank, 2006; Ratcliff and Frank, 2012; Wiecki and Frank, 2013). The boundary
functions considered in the following are the Weibull bound (WEIBULL),

bW B(t; a, α, β) = a ∗ exp
(
− t

β

α
)

and the linear collapse bound (LC),

bLC(t; a, θ) = a−
(

t ∗ sin(θ)
cos(θ)

)
Race Models: N > 2

The Race Model departs from previous model formulations in that it has a particle for each of N

choice options, instead of a single particle representing the evidence for one option over another. The
function fEi(t, θ) now represents the probability of particle i to be the first of all particle to cross
the bound a at time t. We consider race models for which the drift and starting point can vary for
each particle separately. Treating the boundary as a constant a leaves us with a parameter vector
θ = (v1, .., vn, a, w1, ..., wn, ndt). The SDE is defined, for each particle separately (or in vector form)
as,

dXi
τ+t = vi dt + dW, Xi

0 = ... = Xi
τ = wi

These models represent the most straightforward extension to a multi-choice scenario.

3.8.2 MLP

Network Specifics

We apply the same simple architecture consistently across all example contexts in this paper. Our
networks have 3 hidden layers, {L1, L2, L3} of sizes {100, 100, 120}, each using tanh(.) activation
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functions. The output layer consists of a single node with linear activation function.

Training Process

Training Hyperparameters: The network is trained via stochastic back-propagation using the
Adam (Kingma and Ba, 2014) optimization algorithm. As a loss function, we utilize the huber loss
(Huber, 1992) defined as,

f(|y − ŷ|) =
{

0.5 ∗ |y − ŷ|2 if |y − ŷ| ≤ 1
0.5 + |y − ŷ| if |y − ŷ| > 1

Training Data: We used the following approach to generate training data across all examples
shown below.

First, we generate 100K simulations from the stochastic simulator (or model M)), for each of
1.5M parameter configurations. Since for the examples we consider, the stochasticity underlying the
models are in the form of a stochastic differential equation (SDE), all simulations were conducted
using the simple Euler-Maruyama method with timesteps δt of 0.001s. The maximum time we
allowed the algorithms to run was 20s, much more than necessary for a normal application of the
simulator models under consideration.

Based on these simulations, we then generate empirical likelihood functions using kernel density
estimators (KDEs) (Turner, Van Maanen, and Forstmann, 2015a). KDEs use atomic datapoints
{x0, ..., xN} and reformulate them into a continuous probability distribution f(y; x) =

∑N
i K( y−x

h ) ,
where we choose K(.) as a standard Gaussian kernel f(x) = 1√

2π
exp−x2

2 , and h the so-called
bandwidth parameter, is set by utilizing Silverman’s rule of thumb (Silverman, 1986). Where
the data made Silverman’s rule inapplicable we set a lower bound on h as 10−3. Additionally we
follow (Charpentier and Flachaire, 2015) in transforming our KDE to accommodate positive random
variables with skewed distributions (in adherence to the properties of data resulting from the response
time models forming our examples).

To ensure that the networks accurately learn likelihoods across a range of plausible data, for each
parameter set we trained the networks by sampling 1000 datapoints from a mixture distribution
with three components (mixture probabilities respectively {0.8, 0.1, 0.1}. The first component draws
samples directly from the KDE-distributions. The second component is uniform on [0s, 20s], and the
third component samples uniformly on [−1s, 0s]. The aim of this mixture is to allow the network
to see, for each parameter setting of the stochastic simulator, training examples of three kinds: (1)
"Where it matters", that is where the bulk of the probability mass is given the generative model.
(2) Regions of low probability to inform the likelihood estimate in those regions (i.e. to prevent
distortion of likelihood estimates for datapoints that are unlikely to be generated under the model).
(3) Examples on the negative real line to ensure that it is learned to consistently drive likelihood
predictions to 0 for datapoints close to 0.

The supervision signal for training has two components. For positive datapoints (reaction times
in our examples), we evaluate the log likelihood according to our KDE. Likelihoods of negative
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datapoints were set to an arbitrary low value of 10−29 (a log likelihood of − 66.79). 10−29 also
served as the lower bounds on likelihood evaluations. While this constrains our accuracy on the
very tails of distributions, extremely low evaluations unduly affect the training procedure. Since the
generation of training data can easily be parallelized across machines, we simply front-loaded the
data generation accordingly. We refer back to Figure 3.2 for a conceptual overview.

This procedure yields 1.5B labeled training examples on which we train the network. We applied
early stopping upon a lack of loss improvement for more than 5 epochs of training. All model were
implemented using Tensorflow (Abadi et al., 2016).

We note here that this amount of training examples is likely an overshoot by potentially one
or more orders of magnitude. We did not systematically test for the minimum amount of training
examples needed to train the networks. Minimal experiments we ran showed that roughly one tenth
of the training examples lead to very much equivalent training results. Systematic minimization
of the training data is left for future numerical experiments, since we don’t deem it essential for
purposes of a proof of concept.

Sampling algorithms

Once trained, we can now run standard Markov Chain Monte Carlo schemes, where instead of
an analytical likelihood, we evaluate fw(x, θ) as a forward pass through the MLP. Figure 3.1 B
schematically illustrates this approach (following the green arrows), and contrasts with currently
applied methods (red arrows). We report multiple so-conducted parameter recovery experiments
in the Results section and validate the approach first with models with known analytic likelihood
functions.

Regarding sampling we utilized two MCMC algorithms, which showed generally very similar
results. In contrast to the importance sampling algorithm used for the CNN (described below),
MCMC methods are known for having trouble with multimodal posteriors. Running our experiments
across algorithms was a safeguard against incorporating sampler specific deficiencies into our analysis.
We however acknowledge that even more extensive experiments may be necessary for comprehensive
guarantees. First, having an ultimate implementation of our method into the HDDM Python toolbox
(Wiecki, Sofer, and Frank, 2013) in view, we use slice sampling (as used by the toolbox), specifically
the step-out procedure following Neal, 2003. Second, we used a custom implementation of the DE-
MCMC algorithm (Ter Braak, 2006), known for being robust in higher dimensional parameter spaces.
Our DE-MCMC implementation adds reflecting boundaries to counteract problematic behavior when
the sampler attempts to move beyond the parameter space, which is truncated by the (broad) range
of parameters in which the MLP was trained. The number of chains we use is consistently determined
as 5 ∗ |θ|, five times the number of parameters of a given stochastic model. Samplers were initialized,
by using slight perturbations of 5 maximum likelihood estimates, computed via differential evolution
optimization (Storn and Price, 1997; Virtanen et al., 2020). Since results were very similar across
samplers, we restrict ourselves mostly to reporting results derived from the slice sampler, given that
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this sampler forms the back-end of the HDDM user interface we envision. 4.

Additional Notes

Note that we restricted parameter recovery for the MLP to datasets which distributed at least 5%
of choices to the less frequently chosen option. This modest filtering accommodates the fact that
such data-sets were also excluded form the training data for the MLP model, since they (1) present
difficulties for the KDE estimator, (2) lead to generally less stable parameter estimates (i.e., it is not
advisable to use diffusion models when choices are deterministic).

3.8.3 CNN

Network Specifics

The CNN takes as an input a parameter vector θ, giving as output a discrete probability distribution
over the relevant dataspace. In the context of our examples below the output space is of dimensions
RNc ×RNd , where Nc is the number of relevant choice alternatives, and Nd is the number of bins
for the reaction time for each choice (Nd = 512 for all examples below). The network architecture
consists of a sequence of three fully connected up-sampling layers, {LF C

1 , LF C
2 , LF C

3 }, of respectively
{64, 256, 1024} nodes. These are followed by a sequence of three convolutional layers {LC

1 , LC
2 , LC

3 }
with 1×5 kernels, and a final fully connected layer with softmax activation. The network size was not
minimized through architecture search, which along with other potential further speed improvements
we leave for future research.

Training Process

For the CNN, we use 100K simulations from the stochastic simulator for each of 3M parameter
vectors, and bin the simulation outcomes as normalized counts into RNc ×RNd slots respectively
(looking ahead to our examples, Nc concerns the number of choice outcomes, and Nd the number of
bins into which the reaction time outcomes are split for a given simulator). The resultant relative
frequency histograms (empirical likelihood functions) ℓempirical(θ|x) ∀θ ∈ Θ,∀x ∈ X , then serve as
the target labels during training, with the corresponding parameters θ serving as feature vectors.
For a given parameter vector θ the CNN gives out a histogram ℓ̂ϕ(θ|x), where ϕ are the network
parameters. The network is then trained by minimizing the KL-divergence between observed and
generated histograms,

D(ℓ̂(θ|x)∥ℓempirical(θ|x)) =
c∑

i=0

d∑
j=0

[
ℓ̂(θ|xij) log ℓ̂(θ|xij)

ℓempirical(θ|xij)

]
4Implementations of the MLP method, the samplers we used as well as the training pipeline can be found at
https://github.com/lnccbrown/lans/tree/master/al-mlp.
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Training D(ℓ̂(θ|x)∥ℓempirical(θ|x)), is not the only option. We note that it would have been a
valid choice to train on D(ℓempirical(θ|x)∥ℓ̂(θ|x)) (Minka, 2013), or the symmetrized Kullback Leibler
Divergence instead. Training results however were good enough for our present purposes to leave
a precise performance comparison across those loss functions for future research, leaving room for
further improvements.

As for the MLP, we use the Adam optimizer (Kingma and Ba, 2014), and implemented the
network in Tensorflow (Abadi et al., 2016).

Sampling Algorithm

One benefit in using the CNN lies in the enhanced potential for parallel processing across large number
of parameter configurations and datapoints. To fully exploit this capability, instead of running
a (sequential) MCMC algorithm for our parameter recovery studies, we use iterated importance
sampling, which can be done in parallel. Specifically, we use adaptive importance sampling based on
mixtures of t-distributions, following a slightly adjusted version of the suggestions in (Cappé et al.,
2008; Wraith et al., 2009).

While importance sampling is well established, for clarity and the setting in which we apply it,
we explain some of the details here. Importance sampling algorithms are driven by the basic equality,∫

f(θ)dθ =
∫

f(θ)
g(θ) g(θ)dθ

which holds for any pair of probability distributions such that g(θ) > 0, where f(θ) > 0. f(θ) is
our posterior distribution, and g(θ) is the proposal distribution. We now sample N tuples θ according
to g(θ), and assign each θi an importance weight wi = f(θi)

g(θi) .
To get samples from the posterior distribution, we sample with replacement the θ from the

set {θ0, ..., θn}, with probabilities assigned as the normalized weights {w̃0, ..., w̃n}. We note that
importance sampling is exact for N → ∞. However for finite N , the performance is strongly
dependent on the quality of the proposal distribution g(.). A bad match of f(.) and g(.) leads to high
variance in the importance weights, which drives down performance of the algorithm, as commonly
measured by the effective sample size (Liu, 2008),

ˆESS = 1∑N
n=1 w̄2

n

Iterated importance sampling uses consecutive importance sampling rounds, to improve the
proposal distribution g(.). A final importance sampling round is used to get the importance sample
we use as our posterior sample. Specifically, we start with a mixture of t-distributions g0(.), where
M is the number of mixture components. Each component of g0(.) is centered at the MAP according
to a optimization run (again we used differential evolution). The component-covariance-matrix
is estimated by a numerical approximation of the Hessian at the respective MAP. Each round i,
based on the importance sample {x, w}i, we update the proposal distribution (to a new mixture of
t-distributions), using the update equations derived in (Cappé et al., 2008).
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As suggested by Cappé et al., 2008, convergence is assessed using the normalized perplexity
statistic (the exponentiated Shannon entropy of the importance weights). For run i this is computed
as exp

Hk,N

/N , where Hk,N = −
∑N

i=1 w̄k,i log w̄k,i.
To help convergence, we depart from the basic setup suggested in Cappé et al., 2008 in the

following way. We apply an annealing factor γk = max 2z−k, 1 z ∈ {1, 2, 4, .., }, so that for iteration k

of the importance sampler, we are operating on the target f(x)
1

γk . Smoothing the target during the
first iterations helps with successfully adjusting the proposal distribution g(.). Figure 3.2 visualizes
the CNN approach. Again, we emphasize that more numerical experiments using a larger variety of
sampling algorithms are desirable, but are out of the scope for the current paper. 5

3.8.4 Strengths and Weaknesses

In this section we clarify a few strengths and weaknesses of the two presented methods and their
respective use cases. First, representing the likelihood function datapoint-wise as an MLP output, or
globally via the CNN output histogram, affects the potential for parallelization. As exploited by
the choice of sampler, the CNN is very amenable to parallelization across parameters, since inputs
are parameter tuples only. Since the output is represented as a global likelihood histogram, the
dataset-likelihood is computed as the summation of the elementwise multiplied of bin-log-likelihoods,
with a correspondingly binned dataset (counts over bins). This has the highly desirable property of
making evaluation cost (time) independent of dataset size. While the MLP in principle allows parallel
processing of inputs, the data-point wise representation of input values ( {θ, x} ) makes the potential
for cross-parameter parallelization dependent on data-set sizes. While a single evaluation of the CNN
is more costly, cross-parameter batch processing can make it preferable to the MLP. Second, the
CNN has an advantage during training, where the representation of the output as a softmax layer,
and corresponding training via minimization of the KL divergence, provides a more robust training
signal to ensure probability distributions compared to the purely local one in which the MLP learns a
scalar likelihood output as a simple regression problem. Third, and conversely, the MLP formulation
is more natural for trial-wise parameter estimates, since the histogram representations may be
redundant in case data-points are in fact evaluated one by one (given datapoint-wise parameters
induced by trial-by-trial effects on parameter vectors). Give equivalent success in learning likelihoods,
we see potential for speed-up when using the point-wise approach in this case. In principle both
approaches however allow one to estimate the impact of trial-wise regressors on model parameters
during inference, without further training. It is for example common in the cognitive neuroscience
literature to allow the cross-trial time-course of EEG, fMRI, or spike signals to be modelled as a
trial-by-trial regressor on model parameters of e.g. drift diffusion models (Wiecki, Sofer, and Frank,
2013; Frank, Gagne, et al., 2015; Cavanagh et al., 2011; Herz et al., 2016; Pedersen and Frank,
2020). Another relevant example is the incorporation of latent learning dynamics. If a subject’s
choice behavior are driven by reinforcement learning across stimuli, we can translate this into trial

5Implementations of the CNN method, the samplers we used as well as the training pipeline can be found at
https://github.com/lnccbrown/lans/tree/master/al-cnn.
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by trial effects on the parameter vectors of a generative process model (Pedersen and Frank, 2020).
These applications are implicitly enabled at no extra cost with the MLP method, while the trial
by trial split multiplies the necessary computations for the CNN by the number N of data-points
when compared to scenarios that only need dataset-wise parameters. We stress again however that in
general both the CNN, as well as the MLP can directly be used for hierarchical inference scenarios.
The preceding discussion pertains to further potential for optimization and relative strengths, not
categorical potential for application to a given scenario. With respect to the latter, both methods
are essentially equal.

3.9 Appendix

3.9.1 Parameter Recovery

Here we provide additional figures concerning parameter recovery studies. Table 3.1 summarizes the
parameter-wise R2 between ground truth and the posterior mean estimates for each tested model
and for each the CNN and MLP (where applicable) methods in turn. For the MLP, results are based
on a reference run which used training data constructed from KDE empirical likelihoods utilizing
100k simulations each, and a slice sampler stopped with help of the Geweke Diagnostic. Results in
the paper are based on slice samplers as well as Slice samplers, which explains why not all R2 values
match exactly the ones found in other Figures. Our findings were however generally robust across
samplers.

3.9.2 Manifolds / Likelihoods

We show the some examples of the likelihood manifolds for the various models that we tested.

DDM-SDV

Figure 3.13.

Linear Collapse

Figure 3.14.

WEIBULL

Figure 3.15.

LEVY

Figure 3.16.
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DDM N v a w ndt
R2 MLP 1024 1.0 1.0 0.99 1

4096 1.0 1.0 0.99 1
CNN 1024 1 0.94 0.98 1

4096 1 1 0.99 1
DDM-SDV v a w ndt sdv
R2 MLP 1024 0.95 0.94 0.96 1 0.57

4096 0.94 0.95 0.97 1 0.58
CNN 1024 0.98 0.97 0.98 1 0.79

4096 0.99 0.98 0.99 1 0.87
LC v a w ndt θ

R2 MLP 1024 0.99 0.93 0.97 1 0.98
4096 0.99 0.94 0.98 1 0.97

CNN 1024 0.96 0.94 0.97 1 0.97
4096 0.97 0.94 0.98 1 0.97

OU v a w ndt g
R2 MLP 1024 0.98 0.89 0.98 0.99 0.12

4096 0.99 0.79 0.95 0.99 0.03
CNN 1024 0.99 0.94 0.97 1 0.41

4096 0.99 0.95 0.98 1 0.45
LEVY v a w ndt α

R2 MLP 1024 0.96 0.94 0.84 1 0.33
4096 0.97 0.91 0.61 1 0.2

CNN 1024 0.99 0.97 0.9 1 0.71
4096 0.99 0.98 0.95 1 0.8

WEIBULL v a w ndt α β

R2 MLP 1024 0.99 0.82 0.96 1 0.2 0.43
4096 0.99 0.8 0.98 0.99 0.26 0.41

CNN 1024 0.98 0.91 0.96 1 0.4 0.69
4096 0.98 0.91 0.97 1 0.37 0.63

FULL-DDM v a w ndt dw sdv dndt
R2 MLP 1024 0.95 0.94 0.88 1 0 0.28 0.47

4096 0.93 0.94 0.88 1 0 0.25 0.38
CNN 1024 0.98 0.98 0.93 1 0 0.62 0.79

4096 0.99 0.99 0.97 1 0 0.8 0.91
RACE 3 v0 v1 v2 a w0 w1 w2 ndt
R2 CNN 1024 0.88 0.86 0.89 0.19 0.49 0.51 0.5 0.99

4096 0.93 0.91 0.93 0.18 0.49 0.47 0.47 1
RACE 4 v0 v1 v2 v3 a w0 w1 w2 w3 ndt
R2 CNN 1024 0.73 0.68 0.71 0.73 0.11 0.49 0.5 0.48 0.49 0.99

4096 0.79 0.76 0.77 0.81 0.18 0.5 0.5 0.51 0.55 0.99
LCA 3 v0 v1 v2 a w0 w1 w2 g b ndt
R2 CNN 1024 0.58 0.56 0.58 0.47 0.7 0.72 0.68 0.27 0.57 1

4096 0.51 0.5 0.52 0.44 0.67 0.67 0.66 0.23 0.52 1
LCA 4 v0 v1 v2 v3 a w0 w1 w2 w3 g b ndt
R2 CNN 1024 0.5 0.46 0.54 0.51 0.51 0.71 0.69 0.69 0.67 0.18 0.7 0.99

4096 0.42 0.42 0.46 0.42 0.52 0.67 0.63 0.68 0.65 0.15 0.64 1

Table 3.1. Parameter Recovery for a variety of test-bed models

ORNSTEIN

Figure 3.17.

FULL-DDM

Figure 3.18.
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Figure 3.13. A Shows the training and validation loss for Huber as well as MSE for the DDM-SDV
model. Training was driven by the Huber loss. B Illustrates the likelihood manifolds, by varying
one parameter in the trained region. C shows MLP likelihoods in green, on top of a sample of 50
KDE-based empirical likelihoods derived from 20k samples each.

Figure 3.14. A Shows the training and validation loss for Huber as well as MSE for the LC
model. Training was driven by the Huber loss. B Illustrates the likelihood manifolds, by varying
one parameter in the trained region. C shows MLP likelihoods in green, on top of a sample of 50
KDE-based empirical likelihoods derived from 20k samples each.
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Figure 3.15. A Shows the training and validation loss for Huber as well as MSE for the WEIBULL
model. Training was driven by the Huber loss. B Illustrates the likelihood manifolds, by varying
one parameter in the trained region. C shows MLP likelihoods in green, on top of a sample of 50
KDE-based empirical likelihoods derived from 100k samples each.

Figure 3.16. A Shows the training and validation loss for Huber as well as MSE for the Levy
model. Training was driven by the Huber loss. B Illustrates the likelihood manifolds, by varying
one parameter in the trained region. C shows MLP likelihoods in green, on top of a sample of 50
KDE-based empirical likelihoods derived from 100k samples each.
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Figure 3.17. A Shows the training and validation loss for Huber as well as MSE for the ORNSTEIN
model. Training was driven by the Huber loss. B Illustrates the likelihood manifolds, by varying
one parameter in the trained region. C shows MLP likelihoods in green, on top of a sample of 50
KDE-based empirical likelihoods derived from 100k samples each.

Figure 3.18. A Shows the training and validation loss for Huber as well as MSE for the Full-DDM
model. Training was driven by the Huber loss. B Illustrates the likelihood manifolds, by varying
one parameter in the trained region. C shows MLP likelihoods in green, on top of a sample of 50
KDE-based empirical likelihoods derived from 100k samples each.
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Chapter 4

Beyond Drift Diffusion Models:
Fitting a Broad Class of Decision
and Reinforcement Learning
Models with HDDM

Computational modeling has become a central aspect of research in the cognitive neurosciences. As
the field matures, it is increasingly important to move beyond standard models to quantitatively
assess models with richer dynamics that may better reflect underlying cognitive and neural processes.
For example, sequential sampling models (SSMs) are a general class of models of decision making
intended to capture processes jointly giving rise to reaction time distributions and choice data
in n-alternative choice paradigms. A number of model variations are of theoretical interest, but
empirical data analysis has historically been tied to a small subset for which likelihood functions
are analytically tractable. Advances in methods designed for likelihood-free inference have recently
made it computationally feasible to consider a much larger spectrum of sequential sampling models.
In addition, recent work has motivated the combination of SSMs with reinforcement learning (RL)
models, which had historically been considered in separate literature. Here we provide a significant
addition to the widely used HDDM Python toolbox and include a tutorial for how users can easily fit
and assess a (user extensible) wide variety of SSMs, and how they can be combined with RL models.
The extension comes batteries included, including model visualization tools, posterior predictive
checks, and ability to link trial-wise neural signals with model parameters via hierarchical Bayesian
regression.
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4.1 Introduction

The drift diffusion model (DDM, also called diffusion decision model or Ratcliff diffusion model)
(Ratcliff, 1978; Ratcliff, Smith, et al., 2016), and more generally the framework of sequential sampling
models (SSMs) (Hawkins et al., 2015; Ratcliff, Smith, et al., 2016; Voss et al., 2019; Tillman, Trish
Van Zandt, and Logan, 2020; Heathcote, Matzke, and Heathcote, 2022) have become a mainstay
of the cognitive scientist’s model arsenal in the last two decades (Trisha Van Zandt, Colonius, and
Proctor, 2000; Lawlor et al., 2020; Wieschen, Voss, and Radev, 2020).

SSMs are used to model neurocognitive processes that jointly give rise to choice and reaction
time data in a multitude of domains, spanning from perceptual discrimination to memory retrieval
to preference-based choice (Ratcliff, 1978; Smith, Ratcliff, and Sewell, 2014; Ratcliff, Thapar, and
McKoon, 2006; Krajbich and Rangel, 2011; Krajbich, Lu, et al., 2012) across species (Gold and
Shadlen, 2007; Yartsev et al., 2018; Doi et al., 2020). Moreover, researchers are often interested
in the underlying neural dynamics that give rise to such choice processes. As such, many studies
include additional measurements such as EEG, fMRI or eyetracking signals as covariates, which
act as latent variables and connect to model parameters (e.g. via a regression model) to drive trial
specific parameter valuations (Rangel, Camerer, and Montague, 2008; Forstmann et al., 2010; Frank
et al., 2015; Yartsev et al., 2018; Doi et al., 2020). See Figure 4.1 for an illustration of the DDM and
some canonical experimental paradigms.

The widespread interest and continuous use of SSMs across the research community has spurred
the development of several software packages targeting the estimation of such models (Vandekerckhove
and Tuerlinckx, 2008; L. Fontanesi, 2022; Heathcote, Lin, et al., 2019). For a hierarchical Bayesian
approach to parameter estimation, the HDDM toolbox in Python (Wiecki, Sofer, and Frank, 2013)
(available at https://github.com/hddm-devs/hddm) is widely used and the backbone of hundreds of
studies published in peer reviewed journals.

HDDM allows users to conveniently specify and estimate DDM parameters for a wide range of
experimental designs, including the incorporation of trial-by-trial covariates via regression models
targeting specific parameters. As an example, one may use this framework to estimate whether
trial-by-trial drift rates in a DDM co-vary with neural activity in a given region (and/or temporal
dynamic), pupil dilation or eye gaze position. Moreover, by using hierarchical Bayesian estimation,
HDDM optimizes the inference about such parameters at the individual subject and group levels.

Nevertheless, until now, HDDM and other such toolboxes have been largely limited to fitting the
2-alternative choice DDM (albeit allowing for the full DDM with inter-trial parameter variability).
The widespread interest in SSMs has however also spurred theoretical and empirical investigations
into various alternative model variants. Notable examples are, amongst others, race models with
more than 2 decision options, the leaky competing accumulator model (Usher and McClelland, 2001),
SSMs with dynamic decision boundaries (Cisek, Puskas, and El-Murr, 2009; Ratcliff and Frank, 2012;
Trueblood et al., 2021) and more recently SSMs based on Levy flights rather than basic Gaussian
diffusions (Wieschen, Voss, and Radev, 2020). Moreover, as mentioned earlier, SSMs naturally extend
to n-choice paradigms.
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Figure 4.1. Drift Diffusion Model and some example applications.

A similar state of affairs is observed for another class of cognitive models which aim to simultane-
ously model the dynamics of a feedback-based learning across trials as well as the within-trial decision
process. One way to achieve this is by replacing the choice rule in a reinforcement learning (RL)
process, in itself an important theoretical framework in the study of learning behavior across trials
(Dowd et al., 2016; McDougle and Collins, 2021; Eckstein, Wilbrecht, and Collins, 2021; Collins and
Shenhav, 2022) with a cognitive process models such as SSMs. This forms a powerful combination of
modeling frameworks. While recent studies moved into this direction (Mads Lund Pedersen, Frank,
and Biele, 2017; Turner, 2019; Mads L Pedersen and Frank, 2020; Laura Fontanesi et al., 2019;
L. Fontanesi, 2022), they have again been limited to an application of the basic DDM.

Despite the great interest in these classes of models, tractable inference and therefore, widespread
adoption of such models has been hampered by the lack of easy to compute likelihood functions
(including essentially all of the examples provided above). In particular, while many interesting
models are straightforward to simulate, often researchers want to go the other way: from the observed
data to infer the most likely parameters. For all but the simplest models, such likelihood functions are
analytically intractable, and hence previous approaches required computationally costly simulations
and/or lacked flexibility in applying such methods to different scenarios (Turner and Sederberg, 2014;
Turner and Trisha Van Zandt, 2018; Palestro et al., 2019; Shinn, Lam, and J. D. Murray, 2020;
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Boehm et al., 2021). We recently developed a novel approach using artificial neural networks which
can, given sufficient training data, approximate likelihoods for a large class of SSM variants, thereby
amortizing the cost and enabling rapid, efficient and flexible inference (Fengler et al., 2021). We
dubbed such networks LANs, for likelihood approximation networks.

The core idea behind computation amortization is to run an expensive process only once, so that
the fruits of this labor can later be reused and shared with the rest of the community. Profiting from
the computational labor incurred in other research groups enables researchers to consider a larger
bank of generative models and to sharpen conclusions that may be drawn from their experimental
data. The benefit is three-fold. Experimenters will be able to adjudicate between a rising number
of competing models (theoretical accounts), capture richer dynamics informed by neural activity,
and at the same time new models proposed by theoreticians can find wider adoption and be tested
against data much sooner.

Just as streamlining the analysis of simple SSMs (via e.g., the HDDM toolbox and others) allowed
an increase in adoption, streamlining the production and inference pipeline for amortized likelihoods,
we hope, will drive the embrace of SSM variations in the modeling and experimental community by
making a much larger class of models ready to be fit to experimental data.

Here we develop an extension to the widely used HDDM toolbox, which generalizes it to allow for
flexible simulation and estimation of a large class of SSMs by reusing amortized likelihood functions.

Specifically, this extension incorporates,

• LAN (Fengler et al., 2021) based likelihoods for a variety of SSMs (batteries included)

• LAN-driven extension of the Reinforcement Learning (RL) - DDM capabilities, which allows
RL learning rules to be applied to all included SSMs

• New plots which focus on visual communications of results across models

• An easy interface for users to import and incorporate their own models and likelihoods into
HDDM

This paper is formulated as a tutorial to support application of the HDDM LAN extension for
data analysis problems involving SSMs.

The rest of the paper is organized as follows. In section 4.2 we start by providing some basic
overview of the capabilities of HDDM. Section 4.3 gives a brief overview of LANs (Fengler et al.,
2021). Section 4.4 constitutes a tutorial with a detailed introduction on how to use these new features
in HDDM. We conclude in section 4.5 embedding the new features into a broader agenda. Lastly we
mention limitations and preview future developments in section 4.6.

4.2 HDDM: The basics

The HDDM Python package (Wiecki, Sofer, and Frank, 2013) was designed to make hierarchical
Bayesian inference for drift diffusion models simple for end-users with some programming experience
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in Python. The toolbox has been widely used for this purpose by the research community and the
feature set evolves to accommodate new use-cases. This section serves as a minimal introduction
to HDDM to render the present tutorial self-contained. To get a deeper introduction to HDDM
itself, please refer to the original paper (Wiecki, Sofer, and Frank, 2013), an extension paper
specifically concerning reinforcement learning capabilities (Mads L Pedersen and Frank, 2020), and
the documentation of the package. Here we concern ourselves with a very basic workflow that uses
the HDDM package for inference.

Data HDDM expects a dataset, provided as a pandas DataFrame (McKinney, 2010) with three
basic columns. A 'subj_idx' column which identifies the subject, a 'response' column which
specifies the choice taken in a given trial (usually coded as 1 for correct choices and 0 for incorrect
choices) and a 'rt' column which stores the trial-wise reaction times (in seconds). Other columns
can be added, for example to be used as covariates (task condition or additional measurements such
as trial-wise neural data). Here we take the example of a dataset which is provided with the HDDM
package. Codeblock 4.1 shows how to load this dataset into a Python interpreter, which looks as
follows,

cav_data = hddm.load_csv(hddm.__path__[0] + '/examples/cavanagh_theta_nn.csv')

subj_idx stim rt response theta dbs conf
0 0 LL 1.210 1.0 0.656275 1 HC
1 0 WL 1.630 1.0 -0.327889 1 LC
2 0 WW 1.030 1.0 -0.480285 1 HC
3 0 WL 2.770 1.0 1.927427 1 LC
4 0 WW 1.140 0.0 -0.213236 1 HC
... ... ... ... ... ... ... ...
3983 13 LL 1.450 0.0 -1.237166 0 HC
3984 13 WL 0.711 1.0 -0.377450 0 LC
3985 13 WL 0.784 1.0 -0.694194 0 LC
3986 13 LL 2.350 0.0 -0.546536 0 HC
3987 13 WW 1.250 1.0 0.752388 0 HC

[3988 rows x 7 columns]

Codeblock 4.1. Loading package-included data

HDDM Model Once we have our data in the format expected by HDDM, we can now specify
a HDDM model. We focus on a simple example here: a basic hierarchical model, which estimates
separate drift rates (v) as a function of task condition, denoted by the 'stim' column, and moreover
estimates the starting point bias z. (Boundary separation, otherwise known as decision threshold, a

and non-decision time t, are also estimated by default).
This model assumes that the subject level z, a and t parameters are each drawn from the

respective group distributions, the parameters of which are also inferred. The v parameters derive
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basic_hddm_model = hddm.HDDM(cav_data, include=['z'], depends_on={'v': ['stim']})

Codeblock 4.2. Initializing HDDM model

from separate group distributions for each value of 'stim'. Details about the choices of group priors
and hyperparameters can be found in the original toolbox paper (Wiecki, Sofer, and Frank, 2013).
Codeblocks 4.2 and 4.3 show how to construct and sample from such a model.

Sample and Analyze With the HDDM model defined, the goal is to fit this model to a given
dataset. In a Bayesian context this implies obtaining a posterior distribution over model parameters.
For completeness, we note that such posterior distributions are defined via Bayes’ rule,

p(θ|D) ∝ p(D|θ)p(θ)

where D is our data, θ is our set of parameters, p(D|θ) defines the likelihood (analytic in the case
of the standard HDDM class) of our dataset under the model and p(θ) defines our initial prior over the
parameters.

HDDM uses the probabilistic programming toolbox PyMC (Patil, Huard, and C. J. Fonnesbeck,
2010) to generate samples from the posterior distribution via Markov chain Monte Carlo (MCMC)
(specifically, using coordinate-wise slice samples (Neal, 1995)). To generate samples from the posterior
we simply type,

basic_hddm_model.sample(1000, burn=500)

Codeblock 4.3. Sampling from a basic HDDM model

HDDM then provides access to a variety of tools to analyze the posterior and generate quantities
of interest, including:

1. chain summaries: To get a quick glance at mean posterior estimates (and their uncertainty)
for parameters.

2. trace-plots and the Gelman-Rubin statistic (Brooks and Gelman, 1998): To understand issues
with chain-convergence (i.e., whether one can trust that the estimates are truly drawn from the
posterior).

3. the deviance information criterion (DIC) (Spiegelhalter et al., 2014) : As a score to be used for
purposes of model comparison (with caution).

4. posterior predictive plots: To check for the absolute fit of a given model to data (potentially as
a function of task condition, etc).

The HDDM LAN extension maintains this basic HDDM workflow, which we hope facilitates
seamless transition for current users of HDDM. After some brief explanations concerning approximate
likelihoods, which form the spine of the extension, we will expose the added capabilities in detail.
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4.3 Approximate Likelihoods

Approximate Bayesian inference is an active area of research. Indeed, the last decade has seen a
multitude of proposals for new algorithms, many of which rely in one way or another on popular
deep learning techniques (Gutmann et al., 2018; Papamakarios and I. Murray, 2016; Papamakarios,
Nalisnick, et al., 2019; Papamakarios, Sterratt, and I. Murray, 2019; Lueckmann, Bassetto, et al.,
2019; Greenberg, Nonnenmacher, and Macke, 2019; Tejero-Cantero et al., 2020). Relevant to our
goals here are algorithms which can estimate trial-by-trial likelihoods for a given model. The main
idea is to replace the likelihood term in Bayes’ Rule, with an approximation p̂(D|θ), which can be
evaluated via a forward pass through a simple neural network. Once the networks are trained, these
"amortized" likelihoods can then be used as a plug-in (replacing the analytical likelihood function) to
run approximate inference. Having access to approximate likelihoods, the user will now be able to
apply HDDM to a broad variety of sequential sampling models.

The HDDM extension described here is based on a specific likelihood amortization algorithm,
which we dubbed likelihood approximation networks (LANs) (Fengler et al., 2021). Details regarding
this LAN approach, including methods, parameter recovery studies and thorough tests, can be
found in Fengler et al., 2021. Note that in principle, our extension supports the integration of any
approximate (or exact) likelihood, in the context of a now simple interface for adding models to
HDDM. The scope remains limited only insofar as HDDM remains specialized towards choice /
reaction time modeling. Figure 2 provides some visual intuition regarding concerning the ideas
behind LANs.

Figure 4.2. Depiction of the general idea behind likelihood approximation networks. We use a
simulator of a likelihood-free cognitive process model to generate training data. This training data
is then used to train a neural network which predicts the log-likelihood for a given feature vector
consisting of model parameters, as well as a particular choice and reaction time. This neural network
then acts as a stand-in for a likelihood function facilitating approximate Bayesian inference. Crucially
these networks are then fully and flexibly reusable for inference on data derived from any experimental
design.
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4.4 HDDM Extension: Step by Step

A Central Database For Models: hddm.model_config

To accommodate the multitude of new models, HDDM > 0.9 now uses a model specification dictionary
to extract data about a given model that is relevant for inference. The model_config module contains
a central dictionary with which the user can interrogate to inspect models that are currently supplied
with HDDM. Codeblock 4.4 shows how to list the models included by name. For each model, we
have a specification dictionary. Codeblock 4.5 provides an example for the simple DDM.

hddm.model_config.model_config.keys()

Codeblock 4.4. model_config - list available models.

hddm.model_config.model_config["ddm"] =
{
"params": ["v", "a", "z", "t"],
"params_trans": [0, 0, 1, 0],
"param_bounds": [[-3.0, 0.3, 0.1, 1e-3], [3.0, 2.5, 0.9, 2.0]],
"boundary": hddm.simulators.bf.constant,
"hddm_include": ["z"],
"choices": [-1, 1],
"params_default": [0.0, 1.0, 0.5, 1e-3],
"params_std_upper": [1.5, 1.0, None, 1.0],
}

Codeblock 4.5. DDM specfications in model_config

We focus on the most important aspects of this dictionary (more options are available). Under
"params" the parameter names for the given model are listed. "params_trans" specifies if the
sampler should transform the parameter at the given position (Transforming parameters can be
helpful for convergence, especially if the parameter space is strongly constrained a priori, e.g. between
0 and 1). The order follows the list supplied under "param". "param_bounds" lists the parameter-
wise lower and upper bounds of parameters that the sampler can explore. This is important in
the context of LAN based likelihoods, which are only valid in the range of parameters which
were observed during training. We trained the LANs included in HDDM on a broad range of
parameters (spanning quite a large range of sensible data, you can inspect the training bounds
in the hddm.model_config.model_config dictionary under the param_bounds key). However, it
cannot be guaranteed that these were broad enough for any given empirical dataset. If the provided
LANs are deemed inappropriate for a given dataset (e.g., if parameter estimates hit the bounds
upon fitting), it is always possible to retrain on an even broader range of parameters. Ruling out
convergence issues however, should be the first order of business in such cases.

HDDM uses the inverse logistic (or logit) transformation for the sampler to operate on an
unconstrained parameter space. For a parameter θ and parameter bounds [a, b], this transformation
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takes θ from a value in [a, b] to a value x in (−∞,∞) via,

x = ln
(

θ − a

b− θ

)
A given SSM usually has a "decision boundary" which is supplied as a function that can be

evaluated over time-points (t0, ...., tn), given boundary parameters (supplied implicitly via "params").
The values representing each choice are reported as a list under "choices". A note of caution: if a
user wants to estimate a new model that is not currently in HDDM, a new LAN (or generally likelihood)
has to be created, for it to be added to the model_config dictionary. Simply changing a setting in
an existing model_config dictionary will not work. Under the "hddm_include" key, a list holds a
working default for the include argument expected from the HDDM classes. Lastly, "params_default"
specify the parameter values that are fixed (not fit) by HDDM and "params_std_upper" specify
upper bounds on group level standard deviations for each parameter (optional, but this can help
constrain the parameter ranges proposed by the sampler, making it more efficient).

These model_config dictionaries provide a scaffolding for model specification which is applied
throughout all of the new functionalities discussed in the next sections.

Batteries Included: hddm.simulators, hddm.network_inspectors

Figure 4.3. Graphical examples for some of the sequential sampling included in HDDM.

The new HDDMnn (where nn is for neural network), HDDMnnRegressor and HDDMnnStimCoding
classes have access to a (growing) stock of supplied SSMs, including rapid compiled (Behnel et
al., 2010) simulators, and rapid likelihood evaluation via LANs (Fengler et al., 2021) and their
implementation in PyTorch (Paszke et al., 2019). We will discuss how to fit these models to data in
the next section. Here we describe how one can access the low level simulators and LANs directly, in
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case one wants to adopt them for custom purposes. We also show how to assess the degree to which
the LAN approximates the true (empirical) likelihood for a given model. Users who just want to
apply existing SSMs in HDDM to fit data can skip to the next section.

As described in the previous section, the user can check which models are currently available by
using the model_config dictionary. Figure 3, provides some pictorial examples. For a given model,
a doc-string includes some information (and possible warnings) about usage. As an example, let us
pick the angle model, which is a SSM that allows for the decision boundary to decline linearly across
time with some estimated angle (note that although other aspects of the model are standard DDM,
even in this case the likelihood is analytically intractable. Nevertheless, we previously observed that
inference using LANs yields good parameter recovery, as per Fengler et al., 2021).

print(hddm.model_config.model_config['angle']['doc'])

Model formulation is described in the documentation under LAN Extension.
Meant for use with the extension.

Codeblock 4.6. model_config doc-string for the angle model

from hddm.simulators import simulator
from hddm.model_config import model_config
out = simulator(model='angle', theta=model_config['angle']['params_default'],

n_samples=100, delta_t=0.001)

Codeblock 4.7. Using the simulator simulator for generating synthetic data

Codeblock 4.6, illustrates such a doc-string. Codeblock 4.7 shows how we can simulate synthetic
data from this model. Following the code, the variable out is now a three-tuple. The first element
contains an array of reaction times, the second contains an array of choices and finally the third
element returns a dictionary of metadata concerning the simulation run. Next, we can access the
LAN corresponding to our angle model directly by typing the code in codeblock 4.8. We can utilize
the get_torch_mlp function, which is defined in the network_inspectors submodule.

from hddm.network_inspectors import get_torch_mlp
lan_angle = get_torch_mlp(model='angle')

Codeblock 4.8. Loading a torch network from the package

The lan_angle object defined in codeblock 4.8 is in fact a method, which defines the forward
pass through a given LAN. It expects as input a matrix where each row defines a parameter
vector suitable for the SSM of choice (here angle, so we need a value for each of the parameters
['v', 'a', 'z', 't', 'theta'] which can be found in our model_config dictionary). Two
elements are then added: a reaction time and a choice at which we would like to evaluate our
likelihood. Codeblock 4.9 provides a full example.
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# Make some random parameter set
from hddm.simulators import make_parameter_vectors_nn

parameter_df = make_parameter_vectors_nn(model='angle',
param_dict=None, n_parameter_vectors=1)

parameter_matrix = np.tile(np.squeeze(parameter_df.values), (200, 1))

# Initialize network input
network_input = np.zeros((parameter_matrix.shape[0], parameter_matrix.shape[1] + 2))

# Note the + 2 on the right we append the parameter vectors with
# reaction times (+1 columns) and choices (+1 columns)

# Add reaction times
network_input[:, -2] = np.linspace(0, 3, parameter_matrix.shape[0])

# Add choices
network_input[:, -1] = np.repeat(np.random.choice([-1, 1]), parameter_matrix.shape[0])

# Note: The networks expects float32 inputs
network_input = network_input.astype(np.float32)

# Show example output
print('Some network outputs')
print(lan_angle(network_input)[:10]) # printing the first 10 outputs
print('Shape')
print(lan_angle(network_input).shape) # original shape of output

Some network outputs
[[-2.9323568]
[ 2.078088 ]
[ 0.4104141]
[-0.5943402]
[-1.1136726]
[-1.6901499]
[-2.3512228]
[-3.080151 ]
[-3.8215086]
[-4.4257374]]

Shape
(200, 1)

Codeblock 4.9. Check forward pass of supplied angle network.

To facilitate a simple sanity check, we provide the kde_vs_lan_likelihoods plot, which can be
accessed from the network_inspectors submodule. This plot lets the user compare LAN likelihoods
against empirical likelihoods from simulator data for a given matrix of parameter vectors (Fengler
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et al., 2021). The empirical likelihoods are defined via kernel density estimators (KDEs) (Silverman,
1986). We show an example in codeblock 4.10. Figure 4.4 shows the output.

from hddm.network_inspectors import kde_vs_lan_likelihoods

# Make a set of parameter vectors
parameter_df = make_parameter_vectors_nn(model=model, param_dict=None,

n_parameter_vectors=6)

# Generate plot
kde_vs_lan_likelihoods(parameter_df=parameter_df, model=model,

n_samples=1000, n_reps=10, font_scale=1.25)

Codeblock 4.10. Example usage of the kde_vs_lan_likelihood() function to compare LAN
likelihoods to empirical kernel-density estimates.

Figure 4.4. Example of a kde_vs_lan_likelihoods plot. If the green (deterministic) and gray
(stochastic) lines overlap, then the approximate likelihood (MLP for multilayered perceptron, the
neural network that provides our LAN) is a good fit to the actual likelihood.
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Fitting data using HDDMnn, HDDMnnRegressor, and HDDMnnStimCoding classes

Using the HDDMnn, HDDMnnRegressor and HDDMnnStimCoding classes, we can follow the general
workflow established by the basic HDDM package to perform Bayesian inference. In this section we
will fit the angle model to the example dataset provided with the HDDM package. Codeblock 4.11
shows us how to load the correponding dataset, after which we can set up our HDDM model, and
draw 1000 MCMC samples using the code in codeblock 4.12.

cav_data = hddm.load_csv(hddm.__path__[0] + '/examples/cavanagh_theta_nn.csv')

subj_idx stim rt response theta dbs conf
0 0 LL 1.210 1.0 0.656275 1 HC
1 0 WL 1.630 1.0 -0.327889 1 LC
2 0 WW 1.030 1.0 -0.480285 1 HC
3 0 WL 2.770 1.0 1.927427 1 LC
4 0 WW 1.140 0.0 -0.213236 1 HC
... ... ... ... ... ... ... ...
3983 13 LL 1.450 0.0 -1.237166 0 HC
3984 13 WL 0.711 1.0 -0.377450 0 LC
3985 13 WL 0.784 1.0 -0.694194 0 LC
3986 13 LL 2.350 0.0 -0.546536 0 HC
3987 13 WW 1.250 1.0 0.752388 0 HC

[3988 rows x 7 columns]

Codeblock 4.11. Loading package supplied cavanagh dataset.

hddmnn_model_cav = hddm.HDDMnn(cav_data, model='angle', include=['z', 'theta'],
is_group_model = True)

hddmnn_model_cav.sample(1000, burn=500)

[-----------------100%-----------------]
1001 of 1000 complete in 365.3 sec

Codeblock 4.12. Sampling from a HDDMnn model.

We note a few differences between a call to construct a HDDMnn class and a standard HDDM
class. First, the supply of the model argument specifying which SSM to fit (requires that this
model is already available in HDDM; see above). Second, the inclusion of model-specific parameters
under the include argument. The workflow is otherwise equivalent, a fact that is conserved for the
HDDMnnRegressor and HDDMnnStimCoding classes. A third difference concerns the choice of argument
defaults. The HDDMnn class uses non-informative priors, instead of the informative priors derived from
the literature which form the default for the basic HDDM class. Since, as per our earlier discussions,
variants of SSMs are historically rarely fit to experimental data, we can not easily derive reasonable
informative priors from the literature and therefore choose to remain agnostic in our beliefs about
the parameters underlying a given dataset. If the research community starts fitting SSM variants

135



to experimental data, this state of affairs may evolve through collective learning. At this point we
caution the user to however not use these new models blindly. We strongly encourage conducting
appropriate parameter recovery studies, specific to the experimental dataset under consideration. We
refer to the section on inference validation tools below, for how HDDM might help in this procedure.

New Visualization Plots: hddm.plotting

Based on our model fit from the previous section, we illustrate a few new informative plots, which
are now included in HDDM. We can generally distinguish between two types of plots. Plots which
use the traces only (to display posterior parameter estimates) and plots which make use of the
model simulators (to display how well the model can reproduce empirical data given posterior
parameters). The first such plot is produced by the the plot_caterpillar function, which presents
an approximate posterior 99%-HDI (specifically we show the 1% to 99% range in the cumulative
distribution function of the posterior), for each parameter. Codeblock 4.13 shows us how to invoke
this function and Figure 4.5 illustrates the resulting plot.

from hddm.plotting import plot_caterpillar
plot_caterpillar(hddm_model=hddmnn_model_cav, figsize=(8, 8), columns=3)

Codeblock 4.13. Example usage of the caterpillar_plot() function.

The second such plot is the a posterior pair plot, called via the plot_posterior_pair function.
This plot shows the pairwise posterior distribution, subject by subject (and, if provided, condition
by condition). Codeblock 4.14 illustrates how to call this function, and Figure 4.6 exemplifies the
resulting output.

from hddm.plotting import plot_posterior_pair
plot_posterior_pair(hddmnn_model_cav, samples=500, figsize=(6, 6))

Codeblock 4.14. Example concerning usage of the plot_posterior_pair() function.

A last very useful plot addition is what we call the model plot, an extension to the standard
posterior predictive plot, which can be used to visualize the impact of the parameter posteriors
on decision dynamics. For example, if one is estimating a linearly collapsing bound, instead of
just interpreting the posterior angle parameter, one can see how that translates to the evolving
decision bound over time in tandem with the estimating drift rate, etc. It is an extension of the
plot_posterior_predictive function. This function operates by manipulating matplotlib axes
objects, via a supplied axes manipulator. The novel axis manipulator in the example show in
Codeblock 4.15 is the _plot_func_model function. Figure 4.7 show the resulting plot.

We use this moment to illustrate how the angle model in fact outperforms the DDM on this
example dataset. For this purpose we take an example subject from Figure 4.7 and contrast the
posterior predictive of the angle model with the posterior predictive of the DDM side by side in
Figure 4.8. We clearly see that the DDM model has trouble capturing the leading edge and the tail
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Figure 4.5. Example of a caterpillar_plot. The plot, split by model parameters, shows the
99% (line-ends) and 95% (gray band ends) highest density intervals (HDIs) of the posterior for each
parameter. Multiple styling options exist.

from hddm.plotting import plot_posterior_predictive

plot_posterior_predictive(model = hddmnn_model_cav, columns=3, figsize=(10, 12),
groupby=['subj_idx'], value_range=np.arange(0.0, 3, 0.1),
plot_func=hddm.plotting._plot_func_model,
**{'alpha': 0.01, 'ylim': 3, 'samples': 200,

'legend_fontsize': 7., 'legend_location': 'upper left',
'add_posterior_uncertainty_model': True,
'add_posterior_uncertainty_rts': False,
'subplots_adjust': {'top': 0.94, 'hspace': 0.35, 'wspace': 0.3}

})

Codeblock 4.15. Example usage of the plot_posterior_predictive() function
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Figure 4.6. Example of a posterior_pair_plot in the context of parameter recovery. The plot
is organized per stochastic node (here, grouped by the 'subj_idx' column where in this example
'subj_idx' = '0'). The diagonal shows the marginal posterior of a given parameter as a histogram.
The elements below the diagonal show pair-wise posteriors via (approximate) level curves. These
plots are especially useful to identify parameter collinearities, which indicate parameter-tradeoffs and
can hint at issues with identifiability. This example shows how the theta (boundary collapse) and a
(boundary separation) parameters as well as the t (non-decision time) and a parameters trade-off in
the posterior. We refer to Fengler et al., 2021 for parameter recovery results using the underlying
angle SSM. We note that such parameter trade-offs and attached identifiability issues derive not just
from a given likelihood model, but are also affected by the data and parameter structure as task
design and modeling choices.

behavior of the rt distributions simultaneously, while the angle model strikes a much better balance.
While this example does not present a fully rigorous model comparison (DIC scores for example
however bear out the same conclusion) exercise, it provides a hint at the benefits one may expect
from utilizing an expanded model space.

Inference Validation Tools: simulator_h_c()

Validating that a model is identifiable on simulated data is an important aspect of a trustworthy
inference procedure (Tran et al., 2021; Evans, Trueblood, and Holmes, 2020; Holmes and Trueblood,
2018; Wilson and Collins, 2019). We have two layers of uncertainty in this regard. First, LANs
are approximate likelihoods. A model that is otherwise identifiable could in principle lose this
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Figure 4.7. Example of a model_plot. This plot shows the underlying data in blue, choices and
reaction times presented as histograms (positive y-axis for choice option 1, negative y-axis or choice
option 0 or −1). The black histograms show the reaction times and choices under the parameters
corresponding to the posterior mean. In addition the plot shows a graphical depiction of the model
corresponding to parameters drawn from the posterior distribution in black. Various options exist to
add and drop elements from this plot; the provided example corresponds to what we consider the
most useful settings for purposes of illustration. Note that, in the interest of space, we only illustrate
the first six subjects here.

Figure 4.8. Contrasting the posterior predictive of the angle and DDM model on an example
subject. A) shows the angle model and B) shows the DDM. While the fits are not dramatically
better for this dataset (in our experience more extreme differences can be seen in other cases), the
angle model shows two characteristic differences to the DDM model fit. First, it better captures the
graceful initial increase in density for short reaction times. Second, it captures the slower decrease in
density for longer reaction times, as compared to the DDM, for which the reaction time density falls
of quicker than is apparent in the data. Both of these effects are directly produced by allowing a
collapsing bound, instead of the DDM’s static, parallel bounds.

property when using LANs to estimate its parameters from a dataset, should the LAN not have been
trained adequately. Second, a given model can inherently be unidentifiable for a given dataset and or
theoretical commitments (regardless of whether its likelihood is analytic or approximate). As a simple
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example consider an experimental dataset, which does not include enough samples to identify the
parameter of a model of interest with any degree of accuracy. Slightly more involved, the posterior
could tend to be multi-modal, a problem for MCMC samplers that can lead to faulty inference.
While increasing the number of trials in an experiment and/or increasing the number of participants
can help remedy this situation, this is not a guarantee. Apart from the size and structure of the
empirical dataset, our modeling commitments play an important role for identifiability too. As an
example, we might have experimental data from a random dot motion task and we are interested in
modeling the choices and reaction times of participating subjects with our angle model. A reasonable
assumption is that the v parameter (a rough proxy for processing speed) differs depending on the
difficulty of the trial. However, the parameters t and a may not depend on the difficulty since we do
not have a good a-priori theoretical reason to suspect that the non-decision time (t) and the initial
the boundary separation a (the degree of evidence expected to take a decision) will differ across
experimental conditions. These commitments are embedded in the model itself (they are assumptions
on the data generating process imposed by the modeler), and determine jointly with an experimental
dataset whether inference can be successful. For a modeler it is therefore of paramount importance
to check whether their chosen combinations of theoretical commitments and experimental dataset
jointly lead to an inference procedure that is accurate. Since the space of models incorporated into
HDDM has been significantly expanded with the LAN extension, we provide a few tools to help
facilitate parameter recovery studies which are relevant to real experimental data analysis and plan
to supplement these tools even further in the future.

First, we provide the simulator_h_c function, in the hddm_dataset_generators submodule.
The function is quite flexible, however we will showcase a particularly relevant use-case. Taking our
cav_data dataset loaded previously, we would like to generate data from our angle model in such
a way that we encode assumptions about our model into the generated dataset. In the example
below we assume that the v and theta parameters vary as a function of the "stim" column. For
each value of "stim" a group-level µ and σ (defining the mean and standard deviation of a group
level Normal distribution) are generated and subject-level parameters are sampled from this group
distribution. This mirrors exactly the modeling assumptions when specifying a HDDM model with
the depends_on argument set to {'v': 'stim', 'theta': 'stim'}. Codeblock 4.16 provides an
example on how to call this function. The simulator_h_c function returns the respective dataset
(here sim_data) exchanging values in the previous rt and response columns with simulation data.
Trial-by-trial parameters are attached to the dataframe as well. The parameter_dict dictionary
contains all the parameters of the respective hierarchical model which was used to generate the
synthetic data. This parameter dictionary follows the parameter naming conventions of HDDM
exactly. We can fit this data using the HDDMnn class as illustrated in Codeblock 4.17.

The plots defined in the previous section allow us to specify a parameter_recovery_mode which
we can utilize to check how well our estimation worked on our synthetic dataset. Codeblocks 4.18,
4.19 and 4.20 and Figures 4.9, 4.10 and 4.11 show respectively code and plot examples.

Note how both the plot_posterior_pair function as well as the plot_posterior_predictive
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# Generate some data
from hddm.simulators.hddm_dataset_generators import simulator_h_c
sim_data, parameter_dict = simulator_h_c(data=cav_data, model='angle',

p_outlier=0.00,
depends_on={'v': ['stim'], 'theta': ['stim']},
regression_models=None,
regression_covariates=None,
group_only_regressors=False,
group_only=None, fixed_at_default=None)

sim_data

subj_idx stim rt response theta dbs conf v \
0 0 LL 2.020890 1.0 0.442532 1 HC -0.474451
1 0 WL 2.075889 1.0 0.844691 1 LC -0.865643
2 0 WW 2.119889 1.0 0.661660 1 HC 0.752663
3 0 WL 1.804893 0.0 0.844691 1 LC -0.865643
4 0 WW 2.410885 1.0 0.661660 1 HC 0.752663
... ... ... ... ... ... ... ... ...
3983 13 LL 2.874057 1.0 0.402371 0 HC -0.473813
3984 13 WL 2.169051 0.0 0.972350 0 LC -1.001207
3985 13 WL 1.798055 0.0 0.972350 0 LC -1.001207
3986 13 LL 1.709054 1.0 0.402371 0 HC -0.473813
3987 13 WW 2.115052 1.0 0.911009 0 HC 0.824063

a z t
0 1.402356 0.577363 1.468893
1 1.402356 0.577363 1.468893
2 1.402356 0.577363 1.468893
3 1.402356 0.577363 1.468893
4 1.402356 0.577363 1.468893
... ... ... ...
3983 1.283326 0.616165 1.618054
3984 1.283326 0.616165 1.618054
3985 1.283326 0.616165 1.618054
3986 1.283326 0.616165 1.618054
3987 1.283326 0.616165 1.618054

[3988 rows x 11 columns]

Codeblock 4.16. Using the simulator_h_c() function.

function take the parameter_recovery_mode argument to add a ground truth to the visualization
automatically (the ground truth is expected to be included in the dataset attached to the HDDM
model itself). The plot_caterpillar function needs a ground_truth_parameter_dict argument
to add the ground truth parameters. The simulator_h_c function provides such a compatible
dictionary of ground truth parameters. Using the set of tools in this section, we hope that HDDM
conveniently facilitates application relevant parameter recovery studies.
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hddmnn_model_sim = hddm.HDDMnn(sim_data, model='angle',
is_group_model=True, p_outlier=0.00,
include=['v', 'a', 't', 'z', 'theta'],
depends_on = {'v': ['stim'], 'theta': ['stim']},

)
hddmnn_model_sim.sample(1000, burn=500)

[-----------------100%-----------------]
1001 of 1000 complete in 1436.2 sec

Codeblock 4.17. Fitting a HDDMnn model to synthetic data.

from hddm.plotting import plot_caterpillar
plot_caterpillar(hddm_model=hddmnn_model_sim,

ground_truth_parameter_dict=parameter_dict,
figsize=(10, 15), y_tick_size=6, columns=3)

Codeblock 4.18. caterpillar plot on fit to simulated data.

Figure 4.9. Example of a caterpillar_plot. The plot is split by model parameter kind, showing
parameter-wise, the 99% (line-ends) and 95% (gray band ends) highest density intervals (HDIs)
of the posterior. In the context of parameter recovery studies, the user can provide ground-truth
parameters to the plot, which will be shown as blue tick-marks on top of the HDIs. Multiple styling
options exist. Note, in the interest of space, we show only three of the five basic parameters here.
['v', 'a', 'theta'] of the underlying model (leaving out ['z', 't']).
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from hddm.plotting import plot_posterior_predictive
plot_posterior_predictive(model = hddmnn_model_sim, columns = 3, figsize = (10, 12),

groupby = ['subj_idx'], value_range = np.arange(0.0, 3, 0.1),
plot_func = hddm.plotting._plot_func_model,
parameter_recovery_mode = True,
**{'alpha': 0.01, 'ylim': 3,
'add_model': True, 'samples': 200,
'legend_fontsize': 7., 'legend_location': 'upper left',
'add_posterior_uncertainty_rts': False,
'add_posterior_uncertainty_model': True,
'add_posterior_mean_model': True,
'add_posterior_mean_rts': True,
'subplots_adjust': {'top': 0.94, 'hspace': 0.35, 'wspace': 0.3}
})

Codeblock 4.19. model_plot for fit to simulated data.

Figure 4.10. Example of a model_plot. This plot shows the underlying data in blue, choices
and reaction times presented as a histogram (positive y-axis for choice option 1, negative y-axis
or choice option 0 or −1). The black histograms show the reaction times and choices under the
parameters corresponding to the posterior mean. In addition the plot shows a graphical depiction of
the model corresponding to parameters drawn from the posterior distribution in black, as well as
such a depiction for the ground truth parameters in blue, in case these were provided (e.g., if one is
performing recovery from simulated data). Inclusion of the ground truth parameters distinguishes
the present display form Figure 4.7. Various options exist to add and drop elements from this plot,
the provided example corresponds to what we consider the most useful settings for purposes of
illustration. Note that, in the interest of space, we only illustrate the first six subjects here.

from hddm.plotting import plot_posterior_pair
posterior_pair_plot(hddmnn_model_sim, parameter_recovery_mode = True,

samples=500, figsize=(6, 6))

Codeblock 4.20. posterior_pair_plot for fit to simulated data.

Adding to the bank of SSMs: User Supplied Custom Models

The new models immediately available for use with HDDM are just the beginning. HDDM allows users
to define their own models via adjusting the model_config and the provision of custom likelihood
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Figure 4.11. Example of a posterior_pair_plot in the context of parameter recovery. The plot
is organized per stochastic node (here, grouped by the 'stim' and 'subj_idx' columns where in
this example ('stim' = 'LL', 'subj_idx' = '0'). The diagonal show the marginal posterior of
a given parameter as a histogram, adding the ground truth parameter as a blue tick-mark. The
elements below the diagonal show pair-wise posteriors via (approximate) level curves, and add the
respective ground truths as a blue cross.

functions. The goal of this functionality is two fold. First, we aim to make HDDM maximally flexible
for advanced users, cutting down red-tape to allow creative usage. Second, we hope to motivate users
to follow through with a two-step process of model integration. Step one involves easy testing of new
likelihoods through HDDM, however with somewhat limited auxiliary functionality (one can generate
plots based on the posterior traces, but other plots will not work because of the lack of a simulator).
Step two involves sharing the model likelihood and a suitable simulator with the community to allow
full integration with HDDM as well as other similar toolboxes which operate across programming
languages and probabilistic programming frameworks. In future work we hope to flesh out a pipeline
that allows users to follow a simple sequence of steps to full integration of their custom models with
HDDM. Here, we show how to complete step one, defining a HDDMnn model with a custom likelihood
to allow fitting a new model through HDDM. See the section on future work for some guidance on
producing your own LAN, or contact the authors.

We start with configuring the model_config dictionary. We add a "custom" key and assign
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the specifics of our new model. For illustration purposes we will add the angle model to HDDM
(even though it is already provided with the LAN extension). Additionally we need to define a basic
likelihood function that takes in a vector (or matrix / 2d numpy array) of parameters, ordered
according to the list in the "params" key above. As an example, we load our LAN for the angle
model (as supplied by HDDM) as if it is a custom network. Finally we can fit our newly defined
custom model. Codeblock 4.21 illustrates the whole process.

from hddm.torch.mlp_inference_class import load_torch_mlp
# Define our custom model config
my_model_config = {

"params": ["v", "a", "z", "t", "theta"],
"params_trans": [0, 0, 1, 0, 0],
"params_std_upper": [1.5, 1.0, None, 1.0, 1.0],
"param_bounds": [[-3.0, 0.3, 0.1, 1e-3, 0.0], [3.0, 2.5, 0.9, 2.0, 1.1]],
"boundary": hddm.simulators.bf.constant,
"params_default": [0.0, 1.0, 0.5, 1e-3],
"hddm_include": ["z"],
"choices": [-1, 1],
"slice_widths": {"v": 1.5, "v_std": 1, "a": 1, "a_std": 1,

"z": 0.1, "z_trans": 0.2, "t": 0.01, "t_std": 0.15},
}

# Load our custom network (here we load one supplied by HDDM)
custom_network = load_torch_mlp(model='angle')
# Define HDDM model
hddm_model_custom = hddm.HDDMnn(data=data, include=["z", "theta"],

model='custom', model_config=my_model_config,
network=custom_network)

# Sample from the HDDM model
hddm_model_custom.sample(1000, burn=500)

[-----------------100%-----------------]
1001 of 1000 complete in 365.3 sec

Codeblock 4.21. Construct and fit a HDDMnn model using a custom likelihood.

Note that the only difference to a normal call to the hddm.HDDMnn class is supplying appropriate
model specifications for our custom likelihood. We supply the model argument as "custom", alongside
our own config dictionary to the model_config argument. In addition, we explicitly pass to the
network argument, our custom_network defining the likelihood.

Moreover, we note that the supply of custom networks opens up multiple degrees of freedom to
explore improved likelihood approximations. As an example, users may utilize LANs trained on the
log-RT distributions instead of the original RT distributions of a SSM.

Combining SSMs with Reinforcement Learning

While the previous sections focused on employing SSMs in modeling stationary environments, a host
of commonly applied experimental task paradigms involve some form of learning that results from the
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agent’s interactions with the environment. While SSMs can be used to model the decision processes,
we need additional machinery to capture the learning dynamics that arise while subjects perform
such tasks. Reinforcement learning (RL) (Sutton and Barto, 2018) is one computational framework
which can allow us to account for such learning processes. In reinforcement learning, researchers
typically assume a simple softmax choice rule, informed by some ‘utility’ (or ‘goodness’) measure of
taking a particular action in a given state. Mathematically, the choice probabilities are expressed as,

p(actioni; t) = eqaction,i(t)∑
j eqaction,j(t)

While reinforcement learning models can account for learning dynamics in basic choice behavior,
the choice functions commonly employed (e.g., softmax) cannot capture the reaction time. To combine
the strengths of sequential sampling models and reinforcement learning models, recent studies have
used the drift diffusion model to jointly model choice and response time distributions during learning
(Mads Lund Pedersen, Frank, and Biele, 2017; Mads L Pedersen and Frank, 2020; Laura Fontanesi
et al., 2019). Such an approach allows researchers to study not only the across-trial dynamics of
learning but also the within-trial dynamics of choice processes, using a single model. The main idea
behind these models is to allow a reinforcement learning process to drive the trial-by-trial parameters
of a sequential sampling model (such as the basic drift diffusion model), which in turn is used to
jointly capture reaction time and choice behavior for a given trial. This can be applied in complex
tasks which involve learning from feedback (see Figure 4.12). This results in a much more broadly
applicable class of models and naturally lends itself for use in computational modeling of numerous
cognitive tasks where the ’learning process’ informs the ‘decision-making process’. Indeed, a recent
study showed that the joint modeling of choice and RT data can improve parameter identifiability
of RL models, by providing additional information about choice dynamics (Ballard and McClure,
2019). However, to date, such models have been limited by the form of the decision model. Many RL
tasks involve more than two responses, making the DDM inapplicable. Similarly, the assumption of
a fixed threshold may not be valid. For example, during the early learning phase, the differences
in Q-values, and hence drift rates, will be close to zero and there is little value in accumulating
evidence. A standard DDM model would predict that such choices are associated with very long tail
RT distributions. A more appropriate assumption would be that learners use a collapsing bound so
that when no evidence is present, the decision process can terminate.

Utilizing the power of LANs, we can further generalize the RL-DDM framework to include a
much broader class of SSMs as the ‘decision-making process’. The rest of this section provides some
details and code examples for these new RL-SSMs.

Test-bed We test our method on a synthetic dataset of the two-armed bandit task with binary
outcomes. However, our approach can be generalized to any n-armed bandit task given a pre-trained
LAN that outputs likelihoods for the corresponding n-choice decision process (e.g. race models). The
model employed a simple delta learning rule (Rescorla, 1972) to update the action values
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Figure 4.12. RLSSM - combining reinforcement learning and sequential sampling models.

qaction,i(t + 1) = qaction,i(t) + α ∗ [r(t)− qaction,i(t)],

where qaction(t) denotes expected reward (Q-value) for the chosen action at time t, r(t) denotes
reward obtained at time t and α (referred to as rl_alpha in the result plots) denotes the learning
rate. The trial-by-trial drift rate depends on the expected reward value learned by the RL rule.
The drift rate is therefore a function of Q-value updates, and is computed by the following linking
function

v(t) = [qaction,1(t)− qaction,2(t)] ∗ s,

where s is a scaling factor of the difference in Q-values. In other words, the scalar s is the drift
rate when the difference between the Q-values of both the actions is exactly one (Note that we refer
to the scalar s as v in the corresponding figure). We show an example parameter recovery plot for
this Rescorla-Wagner learning model connected to a SSM with collapsing bound in Figure 4.13.

Model definitions for RL with model_config_rl Just like the model_config, the new HDDM
version includes model_config_rl, which is the central database for the RL models used in the
RLSSM settings. Below is an example for simple Rescorla-Wagner updates (Rescorla, 1972), a basic
reinforcement learning rule. The learning rate (referred to as ‘rl_alpha’ in Figure 4.13 to avoid
nomenclature conflicts with the ‘alpha’ parameter in some SSMs) is the only parameter in the update
rule. We do not transform this parameter ("params_trans" is set to 0) and specify the parameter
bounds for the sampler as [0, 1]. Note that for hierarchical sampling, the learning rate parameter α

is transformed internally in the package. Therefore, the output trace for the learning rate parameter
must be transformed by an inverse-logit function,
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1
(1 + exp(−α))

to get the learning rate values back in range [0, 1]. Codeblock 4.22 shows us an example of such a
model_config_rl dictionary.

hddm.model_config_rl.model_config_rl["RWupdate"] =
{

"doc": "Rescorla-Wagner update rule.",
"params": ["rl_alpha"],
"params_trans": [0],
"params_std_upper": [10],
"param_bounds": [[0.0], [1.0]],
"params_default": [0.5],

}

Codeblock 4.22. model_config definition for RL-SSM models.

Analyzing instrumental learning data: The HDDMnnRL class Running HDDMnnRL presents only
a few slight adjustments compared to the other HDDM classes. First, the data-frame containing the
experimental data should be properly formatted. For every subject in each condition, the trials must
be sorted in ascending order to ensure proper RL updates. The column split_by identifies each row
with a specific task condition (as integer). The feedback column gives the reward feedback on the
current trial and q_init denotes the initial q-values for the model. The rest of the data columns are
the same as in other HDDM classes. Codeblock 4.23 provides an example.

import pandas as pd
data = pd.read_csv(hddm.__path__[0] + '/examples/demo_HDDMnnRL/rlssm_data.csv')

response rt feedback subj_idx split_by trial q_init
0 0.0 2.729579 0.0 0 0 1 0.5
1 1.0 3.090593 1.0 0 0 2 0.5
2 1.0 3.892617 1.0 0 0 3 0.5
3 1.0 2.429583 1.0 0 0 4 0.5
4 1.0 2.566581 1.0 0 0 5 0.5
... ... ... ... ... ... ... ...
29995 1.0 3.381547 1.0 19 2 496 0.5
29996 1.0 3.324544 0.0 19 2 497 0.5
29997 1.0 3.132535 0.0 19 2 498 0.5
29998 0.0 3.206539 0.0 19 2 499 0.5
29999 1.0 5.009474 0.0 19 2 500 0.5

[30000 rows × 7 columns]

Codeblock 4.23. Reading in RL-SSM example data.

We can fit the data loaded in Codeblock 4.23 using the HDDMnnRL class. We showcase such a
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fit using the weibull model in conjunction with the classic Rescorla-Wagner learning rule (Rescorla,
1972). The HDDMnnRL class definition (shown in Codeblock 4.24) takes a few additional arguments
compared to the HDDMnn class: "rl_rule" specifies the RL update rule to be used and non_centered
flag denotes if the RL parameters should be re-parameterized to avoid troublesome sampling from
the neck of the funnel of probability densities (Betancourt and Girolami, 2013; Papaspiliopoulos,
Roberts, and Sköld, 2007).

rlssm_model = hddm.HDDMnnRL(data, model="weibull", rl_rule="RWupdate",
non_centered=True, p_outlier=0.0,
include=["z", "alpha", "beta", "rl_alpha"],

)
rlssm_model.sample(3000, burn=1500)

Codeblock 4.24. Constructing and sampling from a HDDMnnRL model.

Figure 4.13 shows a caterpillar plot to verify the LAN-based parameter recovery on a sample
RLSSM model.

Figure 4.13. Parameter recovery on a sample synthetic dataset using RL+Weibull model. Posterior
distributions for subject-level and group-level parameters are shown using caterpillar plots. The thick
black lines correspond to 5-95 percentiles, thin black lines correspond to 1-99 percentiles. The blue
tick-marks show the ground truth values of respective parameters. Note, in the interest of space, we
show only a subset of the parameters of the model - the two boundary parameters alpha and beta
and the reinforcement learning rate rl_alpha.

Neural Regressors for RLSSM with the HDDMnnRLRegressor class The new HDDMnnRLRegressor
class, is aimed at capturing even richer (learning or choice) dynamics informed by neural activity,
just like the HDDMnnRegressor class described above for basic SSMs. The extension works the same
as the bespoke HDDMnnRegressor class, except that the model is now informed by a reinforcement
learning process to account for the across-trial dynamics of learning. The method allows estimation
of the parameters (coefficients and intercepts) linking the neural activity in a given region and time
point to the RLSSM parameters.

The usage of HDDMnnRLRegressor class is the same as HDDMnnRL class except that our dataframe
will now have additional column(s) for neural (or other, e.g. EEG, pupil dilation etc.) trial-by-trial
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covariates. Just as with the HDDMnnRegressor class, the model definition will also include specifying
regression formulas which link covariates to model parameters. For example, if the boundary threshold
parameter a is dependent on some neural measure neural_reg, Codeblock 4.25 shows us how to
specify a corresponding HDDMnnRLRegressor model.

rlssm_reg_model = hddm.HDDMnnRLRegressor(data, 'a ~ 1 + neural_reg', model="weibull",
rl_rule="RWupdate", p_outlier=0.0
include=["z", "alpha", "beta", "rl_alpha"],

)
rlssm_reg_model.sample(3000, burn=1500)

Codeblock 4.25. Constructing and sampling from a HDDMnnRLRegressors model.

Lastly, it is important to note that we are continually adding new functionalities to the HDDMnnRL
and HDDMnnRLRegressor classes. Given the state of active development for these classes, we suggest
that the users refer to the HDDM documentation for any updates to the usage syntax or other
changes.

More Resources

The original HDDM (Wiecki, Sofer, and Frank, 2013) paper as well as the original HDDMrl paper
(Mads L Pedersen and Frank, 2020) are good resources on the basics of HDDM. The documentation
provides examples for many complex use cases, including a long tutorial specifically designed to
illustrate the HDDMnn classes and another tutorial specifically designed to showcase the HDDMnnRL
classes. Through the hddm user group, an active community of HDDM users, one can find support
on many problems and use cases which may not come up in the official documentation or published
work.

4.5 Concluding Thoughts

We hope this tutorial can help kick-start a more widespread application of SSMs in the analysis
of experimental choice and reaction time data. We consider the initial implementation with focus
on LANs (Fengler et al., 2021) as a starting point, which allows a significant generalization of the
model space that can be considered by experimenters. The ultimate goal however is to lead towards
community engagement, providing an easy interface for the addition of custom models as a start,
which could greatly expand the space of models accessible to research groups across the world. We
elaborate on a few possible directions for advancements in the next section.

4.6 Limitations and Future Work

The presented extension to HDDM greatly expands the capabilities of a tried and tested Python
toolbox, popular in the cognitive modeling sphere. However, using HDDM as the vehicle of choice,
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limitations endemic to the toolbox design remain and warrant a look ahead. First, HDDM is based
on PyMC2 (Patil, Huard, and C. J. Fonnesbeck, 2010) a probabilistic modeling framework that
has since been superseded by it’s successor PyMC3 (Salvatier, Wiecki, and C. Fonnesbeck, 2016)
(PyMC 4.0, a rebranded PyMC has just been released too). Since PyMC2 is not an evolving toolbox,
HDDM is currently bound to fairly basic MCMC algorithms, specifically a coordinate-wise slice
sampler (Neal, 2003). While we have confirmed adequate posterior sampling and estimation using
our LANs, estimation may be rendered more efficient if one were to leverage more recent MCMC
algorithms such as Hamiltonian Monte Carlo (Hoffman and Gelman, 2014). Moreover, new libraries
have emerged that act as independent functionality providers for other probabilistic programming
frameworks, e.g. the ArViz (Kumar et al., 2019) python library which provides a wide array of
capabilities from posterior visualizations to the computation of model comparison metrics such as the
WAIC (Watanabe, 2013). Custom scripts can be used currently to deploy ArViz within HDDM. We
are moreover working on a successor to HDDM (we dub it HSSM) which will be built on top of one or
more of these modern probabilistic programming libraries. Second, we realize that a major bottleneck
in the wider adoption of LANs (and other likelihood approximators), lies in the supply of amortizers.
While our extension comes batteries included, we focused on supplying a few SSM variants of proven
interest in the literature, as well as some that we used for our or lab-adjacent research. It is not
HDDM, but user friendly training pipelines for amortizers, which we believe to spur the quantum
leap in activity in this space. Although we are working on the supply of such a pipeline for LANs
(Fengler et al., 2021), our hope is that the community will provide many alternatives. Third, we
caution against uninformed use of approximate likelihoods. Before basing results of empirical studies
on inference performed with LANs or other approximate likelihoods (e.g. user supplied), it is essential
to test for the quality of inference that may be expected. Inference can be unreliable in manifold
ways (Gelman, Rubin, et al., 1992; Talts et al., 2018; Geweke, 1992). Parameter recovery studies and
calibration tests, e.g. simulation based calibration (Talts et al., 2018) should form the backbone of
trust in reported analysis on empirical (experimental) datasets. To help the application of a universal
standard of rigor, we are working on a set of guidelines, such as a suggested battery of tests to pass
before given user supplied likelihoods should be made available to the public. Other interesting work
in this sphere is emerging (Lueckmann, Boelts, et al., 2021; Hermans et al., 2021).
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Chapter 5

Marrying Likelihood
Approximations with Modern
Inference Algorithms

Previous work concerning likelihood approximations for simulation-based inference has demonstrated
the capacity of this framework to successfully expand the horizon of computational models which
may routinely be applied for the analysis of complex experimental data in computational cognitive
science and neuroscience. Speedy inference is enabled by the use of simple, but effective neural
network architectures, for which a forward pass may be executed on ordinary hardware in milliseconds,
replacing otherwise costly simulation runs. However, speed of inference remains a concern when
datasets and corresponding modeling choices are sufficiently complex. Examples include the decision
to apply a hierarchical generative model structure to data concerning a large number of subjects,
each of which may have run through a large number of trials and experimental conditions. This
work aims at further optimization of inference speed when utilizing likelihood approximations. Two
paths are explored. First, the choice of Markov Chain Monte Carlo sampler. We investigate the
use of modern Hamiltonian Monte Carlo samplers for posterior exploration. These samplers utilize
gradients of LANs with respect model (input) parameters, demanding an extra level of robustness
at the level of derivatives, which previous approaches could ignore. Second, we explore the use of
stochastic Variational Inference as an alternative route to approximate inference. Here the focus is
on the quantification of the loss of precision in posterior inference when relying on specific variational
distributions. Proofs of concepts and extensive numerical experiments are provided for both avenues
of exploration.
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5.1 Introduction

Simulation Based Inference (SBI) methods are transforming the process by which inference is
conducted across disciplines. They allow researchers to apply sophisticated inference procedures to
models, which are a priori defined only as simulators. Statistics curricula tend to teach methods with
the aid of statistical (stochastic) models for which not only simulators, but also likelihood functions
(analytical probability distributions over data given model parameters) are accessible: necessary for
the mechanics of typically taught inference algorithms. This biases the perception of researchers
towards and consequently leads to an overapplication of such models driven by analytical convenience.
Standard Bayesian inference, for example, proceeds under the assumption that we can evaluate the
right-hand side of the proportional Bayes’ rule,

p(θ|x)∝̃pM(x|θ)p(θ)

where θ is a vector of parameters for our given model M, x is our observed data, p(θ) is called a
prior distribution for parameters θ and pM(x|θ) is the likelihood of observing x under modelM with
parameters θ. Repeated evaluation of this right-hand side drives any common Bayesian inference
algorithm, from Importance Sampling (IS) to Markov Chain Monte Carlo (MCMC) to Variational
Inference (VI) (Brooks et al., 2011). While, as stated above, statistical curricula focus predominantly
on generative models for which this can be computed easily, it is quite trivial to find examples for
which this computation cannot be carried out without a severe computational cost (Lotka, 1925;
M. A. Beaumont, 2010).

The history of Simulation Based Inference (SBI, previously called ABC for Approximate Bayesian
Computation) as a field goes back at least 25 years (Tavaré et al., 1997; Pritchard et al., 1999;
Sisson, Fan, and M. Beaumont, 2018), focusing exactly on scenarios where posterior inference
is desired without the ability to directly compute the likelihood term pM(x|θ). A journey from
initial breakthrough algorithms (Tavaré et al., 1997; Pritchard et al., 1999) with obvious limitations
has brought us to a second generation that slowly embraced machine learning approaches to the
problem (Wood, 2010; Wilkinson, 2014; Meeds and Welling, 2014; Järvenpää et al., 2018; Järvenpää
et al., 2021; Acerbi, 2020) (as mentioned in chapter 2 the timeline is not strictly sequential) to the
current and third generation of SBI methods driven by deep learning (Papamakarios and Murray,
2016; Papamakarios, Pavlakou, and Murray, 2017; Papamakarios, Sterratt, and Murray, 2019a;
Greenberg, Nonnenmacher, and Macke, 2019; Lueckmann et al., 2019; S. T. Radev et al., 2020;
Fengler, Govindarajan, et al., 2021b; Boelts et al., 2022) (see chapter 2 for a thorough review).
Without recounting the full landscape of available SBI approaches, it is worth mentioning that
the broad taxonomy of contemporary deep learning inspired methods evolves along two fault lines:
First, the choice of target of the SBI algorithm. Recent methods tend to target one of two objects
as learnable (via deep neural networks of varying architectures). Either they target the posterior
distribution directly, bypassing any explicit likelihood computations at all, allowing near instant
posterior inference after learning, however at the cost of inflexibility of the learned posterior with
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respect to changes in the generative model (S. T. Radev et al., 2020; Greenberg, Nonnenmacher,
and Macke, 2019; Papamakarios and Murray, 2016). Or, second, they target some form of likelihood
approximation (Papamakarios, Sterratt, and Murray, 2019a; Fengler, Govindarajan, et al., 2021b;
Boelts et al., 2022), which once learned serves to facilitate the evaluation of an approximate right-
hand side to Bayes rule (as above) in the context of standard Bayesian inference algorithms applied
downstream. Methods targeting approximate likelihoods offer much greater flexibility as to the
ability for downstream applications (see a detailed discussion in Fengler, Govindarajan, et al., 2021b
and chapter 2), which we argued previously (Fengler, Govindarajan, et al., 2021b) to be desirable.

We proposed likelihood approximation networks (LANs) (Fengler, Govindarajan, et al., 2021b)
a method for trial-wise likelihood approximation based on deep learning, with a strong focus on
downstream speed of inference. As a natural test-bed for LANs, we focused on the class of sequential
sampling models (SSMs) (Forstmann, Ratcliff, and Wagenmakers, 2016). We considered SSMs as
ripe to benefit from an infusion of reliable targeted SBI methods: The basic SSM, the famous Ratcliff
Drift Diffusion Model (DDM) for which likelihoods can be computed with relative ease (Navarro and
Fuss, 2009; Foster and Singmann, 2021), is widely applied across a range experimental paradigms
(Rangel, Camerer, and Montague, 2008; Forstmann, Anwander, et al., 2010; Frank et al., 2015;
Yartsev et al., 2018; Doi et al., 2020; Cavanagh, Wiecki, et al., 2011; Herz et al., 2016; Mads Lund
Pedersen, Frank, and Biele, 2017; Mads L Pedersen and Frank, 2020), while variations have generated
broad theoretical interest (Cisek, Puskas, and El-Murr, 2009a; Cisek, Puskas, and El-Murr, 2009b;
Usher and McClelland, 2001; Wieschen, Voss, and S. Radev, 2020; Krajbich et al., 2012; Holmes,
Trueblood, and Heathcote, 2016) with hardly any applications to real data, due to a systematic lack
of easy to compute likelihood functions. A textbook case of where SBI can be useful. Historical data
analysis applications are broadly restricted to overly simple models due to analytical convenience.
While evidence for the benefit of variations has accumulated (Cisek, Puskas, and El-Murr, 2009a;
Cisek, Puskas, and El-Murr, 2009b; Usher and McClelland, 2001; Wieschen, Voss, and S. Radev,
2020; Krajbich et al., 2012; Holmes, Trueblood, and Heathcote, 2016), those which we can easily
simulate data from, lack analytical likelihoods (see more concrete examples in 2).

Our previous work (Fengler, Govindarajan, et al., 2021b; Fengler, Bera, et al., 2022), chapter 3
and chapter 4 in this thesis, has shown LANs to perform well on a selection of SSMs for which
likelihood computations are either costly or intractable. Comparing the speed of inference, we found
LANs to be on average as fast as the fastest analytical approaches for the DDM (Navarro and
Fuss, 2009). Depending on specific properties of the experimental datasets, LANs may outperform
analytical methods or end up slightly slower. We moreover made LANs available to the community
via an extension to the HDDM python toolbox, which now goes beyond performing hierarchical
Bayesian inference for DDMs and instead incorporates a large selection of alternative SSMs out of
the box.

While this previous research translates into a great expansion of the type of data analysis options
available at the fingertips of experimentalists, experience shows that room for improvement remains
on the front of inference speed. Posterior inference for large datasets with complicated generative
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models (e.g. hierarchical inference with multiple experimental conditions for each of > 50 subjects)
may still take up more than a day’s worth of computation, limiting the amount of computational
experimentation and therefore the speed of the research enterprise and potential for applications in
general.

In this work I explore two avenues to further improve the speed of inference, while maintaining
LANs as likelihood approximators. The goal is two-fold. First, I attempt to realize improvements
in runtime while maintaining (or improving) sample quality. Second, the work reveals whether a
toolbox around LANs based on modern probabilistic programming packages (Carpenter, Gelman,
M. D. Hoffman, Lee, Goodrich, Betancourt, M. A. Brubaker, et al., 2017; Phan, Pradhan, and
Jankowiak, 2019; Bingham et al., 2019; Salvatier, Wiecki, and C. Fonnesbeck, 2016a) is fundamentally
feasible.

The first avenue I explore is whether a modernization of the MCMC sampler is feasible with LAN-
based likelihoods. HDDM (Wiecki, Sofer, and Frank, 2013; Fengler, Bera, et al., 2022) currently uses
coordinate-wise slice sampling (Neal, 2003), a robust but old-fashioned posterior sampling method.
This stands in contrast with the types of samplers which are the workhorses for modern Bayesian
inference. All major probabilistic programming software with emphasis on MCMC today (Carpenter,
Gelman, M. D. Hoffman, Lee, Goodrich, Betancourt, M. Brubaker, et al., 2017; Phan, Pradhan, and
Jankowiak, 2019; Bingham et al., 2019; Salvatier, Wiecki, and C. Fonnesbeck, 2016a) rely on some
form of gradient-informed sampling (Besag and Green, 1993; Neal et al., 2011; Betancourt, 2017)
which avoids several shortcomings of more traditional MCMC methods, in particular improving on
mixing behavior for high dimensional and potentially highly correlated target distributions (Neal
et al., 2011; Vrugt et al., 2009; Ter Braak, 2006a; Gentle, Härdle, and Mori, 2012). Specifically the
landscape is dominated by a Hamiltonian Monte Carlo (HMC) sampler (Betancourt and Girolami,
2015; Neal et al., 2011) (explained in more detail in the next section), dubbed NUTS (M. D. Hoffman
and Gelman, 2014) for No-U-Turn Sampler. That LANs are suitable for HMC is not assured a priori.
While LANs are differentiable with respect to model parameters by design (since they are inputs
to the network, which is a differentiable function), they are not trained (Fengler, Govindarajan,
et al., 2021b) in a way that assures regular behavior of gradients, which in turn is essential for taking
successful steps through the implicit dynamical systems solved in the process of generating candidate
draws in HMC samplers. I will test the feasibility and evaluate the potential for runtime speedups
over traditional methods in the rest of this chapter.

The second avenue I explore is stochastic Variational Inference (VI) (Ranganath, Gerrish, and
Blei, 2013; Wingate and Weber, 2013; Wainwright, Jordan, et al., 2008; Blei, Kucukelbir, and
McAuliffe, 2017)based on LANs. Variational Inference is an optimization-based approach to Bayesian
inference which has been shown to massively outperform MCMC methods in appropriate settings
(Blei, Kucukelbir, and McAuliffe, 2017), despite its own shortcomings. I explain the approach in more
detail in section 5.2, but it is helpful to briefly discuss the main idea here. Instead of attempting
to sample from the posterior, VI uses optimization to fit a parametric distribution, the so-called
variational distribution, to the posterior.
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While we can perform stochastic VI without reliance on the gradients of LANs (gradient com-
putations are necessary only for the variational distribution), it is important to assess how well a
given family of variational distributions approximates the true posterior. For very complex posterior
distributions, the user should specify a complex (i.e., containing many parameters) variational family,
which in turn complicates the optimization procedure and thus potentially reduces runtime gains.
This may impact the feasibility of the optimization problem altogether. In this work, I test two types
of variational families with an eye toward runtime, but also toward quality of posterior inference: the
family of Isotropic Multivariate Normal Distributions (IMVNs) as well as the family of multivariate
Normal distributions (MVNs) with arbitrary covariance structures.

Across both MCMC and VI paradigms, I use DDM as a main test-bed to establish a proofs of
concept concerning feasibility of the respective methods in our context. Based on this, the intend is
to asses the potential for further modernization of probabilistic programming infrastructure around
LAN-reliant Bayesian inference. To foreshadow the results: the numerical experiments support the
conclusion (section 5.4) that LANs offer a robust basis for both HMC and VI for the DDM, providing
high quality inference with massive runtime savings as compared to the coordinate-wise slice sampler
implemented through HDDM (Wiecki, Sofer, and Frank, 2013; Fengler, Bera, et al., 2022). Both
methods thus warrant further numerical experiments exploring the broader space of SSMs.

This chapter is organized as follows. In section 5.2 I introduce (albeit briefly) all relevant
conceptual background, including the basic construction of SSMs, utilized MCMC and VI algorithms
as well as basic aspects of the numerical experiments conducted, such as the design of the synthetic
datasets, specific settings for inference algorithms and the computing environments on which the
numerical experiments were run. Section 5.3 then describes the results of the numerical experiments.
The focus is on an analysis of relative runtimes along with calibration and parameter recovery
performance of the tested inference algorithms. Section 5.4 summarizes and contextualizes the results.
I finish with limitations and an overview of potential future research in section 5.5.

5.2 Methods

5.2.1 Sequential Sampling Models

The test-bed for numerical experiments, as in the basic papers on LANs (Fengler, Govindarajan,
et al., 2021b) and the corresponding HDDM expansion (Wiecki, Sofer, and Frank, 2013; Fengler,
Bera, et al., 2022), will be a selection of sequential sampling models (SSMs). In general SSMs tend
to be describable as specific instances of the following general stochastic differential equation (SDE),

dXt = a(t, x) dt + b(t, x) dBt, X0 = w

where we are concerned with the probabilistic behavior of the particle (or vector of particles) X.
The behavior of this particle is driven by the drift function a(t, x), the noise transformation function
b(t, x), the incremental noise process Bt, and X0 = w, the starting point. The above equation
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defines a process for stochastic evolution of the position of particle X over time. It is commonly
assumed that this particle represents an instantaneous state of relative evidence in favour of one
of two choice options. For purposes of the analysis of reaction time and choice data, of interest
is not the position of the particle itself, but instead a derived quantity: the probability (density),
defined on the time-axis (t), that the evidence (particle) crosses one of two given thresholds first
(criterion, potentially changing as a function of time), ci(t) (indicating a choice of option ci) at a
given time t ( or rt for reaction time), which we finally write as p({rt, c}|θ). This defines a probability
density function over reaction time and choice data, which depends on a given set of SSM parameters
θ, and is generally knows as a First Passage Distribution (FPD). But p({rt, c}|θ) is also called a
likelihood function and may instead canonically denoted as ℓ(θ|{rt, c}) (signifying it as a function of
the parameters given data).

We will focus on two specific such SSMs in this chapter. First we begin with the vanilla DDM
as a benchmark, given its popularity in the community. Although a closed-form analytical solution
for the likelihood is available, I use the LAN here to evaluate how approximation errors induced by
the LAN approach might impact inference; previous work showed that inference using LANs was
nearly as good as the analytic solution (Fengler, Govindarajan, et al., 2021a), but the present idea
is to investigate this in the presence of other modern inference methods. I also test these methods
using the ANGLE model, which has no easy-to-compute closed form likelihood function to begin
with. I now describe these models in some detail, following the general notation laid out above.

DDM

The DDM has four basic parameters: (v, a, z, t): A drift rate v, a constant criterion (otherwise known
as boundary separation or decision threshold) a, a non-decision time t (added to the time of the
actual decision process modeled via the stochastic differential equation) and an initial starting point
bias z.

In our established notation this amounts to the following. We set the drift function a(t, x) = v,
that is for a given trial the rate of accumulation is constant. Moreover we set the noise function to
b(t, x) = 1 (the noise scale is fixed across time) and X0 = z (the diffusion starts at point z). Finally
the criterion for choice 1 is set to c1(t) = a and the criterion for choice 0 (or also denoted −1) is set
to c0(t) = −a. The non-decision time t will simply be added to the time of the process. It simply
shifts the reaction time distribution to the right.

Hence we end up with the following SDE,

dXt = v dt + dBt, X0 = z

and its corresponding FPD

p({rt, c}|(v, a, z, t))

which specify the DDM model.
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ANGLE

The ANGLE model add as parameter θ: the criterion angle θ.
In our established notation, the only difference between the ANGLE model and the DDM is that

the criterion is now described by the function,

c1(t) = a− (t ∗ sin(θ)
cos(θ) )

for choice 1, and c0(t) = −c1(t), for choice 0. Hence we end up with the following SDE,

dXt = v dt + dBt, X0 = z

and its corresponding FPD

p({rt, c}|(v, a, z, t, θ))

that specify the DDM model.

Simulation

Model simulations across all models were performed using a custom Python package developed for
the purpose. The code is available under https://github.com/AlexanderFengler/ssm_simulators.
The package uses the standard Euler-Maruyama method to simulate trajectories iteratively according
to the following discretization of the underlying SDE:

Xt+∆t = Xt + a(t, x)∆t + b(t, x)∆B

∆t was set to 0.001, meaning steps will be on the order of milliseconds.

5.2.2 LANs

A detailed discussion of LANs can be found in Fengler, Govindarajan, et al., 2021b (or chapter 3 in this
thesis), but I provide a quick overview below. The fundamental idea behind LANs is to use function
approximators. These are Multi-Layered Perceptrons (MLPs) and Convolutional Neural Networks
(CNNs) in the dedicated paper, but many choices of architecture and function approximators would
be valid. The numerical experiments in this chapter relied on MLPs as they are supplied with HDDM
(Wiecki, Sofer, and Frank, 2013; Fengler, Bera, et al., 2022). The parameters w are used to learn a
mapping fw(θ, x) from model parameters θ and data x to the corresponding log-likelihood under model
M : ℓM(θ|x). Since we are interested in the application to likelihood-free models (models for which
we have access only to a simulator), we do not assume direct access to an analytical expression for
ℓM(x|θ) and instead rely on model simulations to construct continuous empirical likelihood functions
via kernel density estimation. We then use evaluations of such empirical likelihood functions ℓ̂M(θ|x)
as training targets, finally training the models on tuples ({xi, θi}, ℓ̂M(θi|xi)), ultimately receiving
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Figure 5.1. High level overview of the LAN framework. For a given model M, we sample model
parameters θ from a region of interest (left 1), then run simulations (upper left). We use those
simulations to construct a KDE-based empirical likelihood. The combination of parameters and
the respective likelihood is then used to train the likelihood approximation network (middle). Once
trained we can use the MLP for posterior inference given an empirical / experimental dataset (right).

learned approximate log-likelihood function fw∗(θ, x) (where w∗ signifies the learned parameters of
the network), which we consequently dubbed a "LAN" or likelihood approximation network.

We can then use such a LAN for Bayesian statistical inference, simply substituting it for the
otherwise-unknown likelihood function on the right-hand side of Bayes Rule to get

p̂(θ|x) ∝ fw∗(θ, x)p(θ)

where p̂(θ|x) signifies the resulting (proportional) approximate posterior, and p(θ) stands for a given
prior on the model parameters θ. I emphasize that, since the trial-wise likelihood functions are the
learned objects, LANs can be reused flexibly, for instance when including trial-by-trial regressions
with neural or other covariates, modeling arbitrarily complex experimental designs or evaluating a
large number of subjects and trials (Frank et al., 2015; Cavanagh and Frank, 2014).

As shown with the examples of SSMs in Fengler, Govindarajan, et al., 2021b, for purposes of
log-likelihood evaluation, the resulting LAN will outperform the process of constructing empirical
likelihood functions by orders of magnitude: Savings which result in fast inference downstream once
a LAN is trained. Moreover, important in the context of this chapter, LANs are differentiable with
respect to their inputs, affording the application of MCMC methods that use posterior gradients
to improve mixing behavior such as the Hamiltonian MCMC methods illustrated in the respective
section below. Figure 5.1 illustrates the LAN framework. For a more detailed discussion of LANs
please refer to chapter 3.

Since the numerical experiments in this chapter deal with SSMs, we often specialize the data x to
tuples (c, rt) where c stands for choice option and rt refers to reaction times.
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5.2.3 Variational Inference

Variational Inference (VI) is a framework for approximating Bayesian Inference which is based on
optimization. This puts it in stark contrast to the otherwise-common inference approaches based on
either analytical computations in conjugate problems or posterior sampling-based Markov Chain
Monte Carlo (Gelman, Carlin, et al., 1995). Predominantly used in the context of Bayesian Statistical
Modeling (Wainwright, Jordan, et al., 2008), it also has broad applications in the world of deep
learning (Kingma, Salimans, and Welling, 2015; Kingma, Welling, et al., 2019; Doersch, 2016; Rezende
and Mohamed, 2015; Rezende, Papamakarios, et al., 2020), where it can significantly speed up
inference time at the cost of the exactness of the resulting posteriors.

The optimization objective of VI is in general described as

arg min
q(θ)∈Q

KL(q(θ)||p(θ|x))

where q(θ) represents a candidate approximate posterior, which we select from a permissible function
class Q, and p(θ|x) is the actual posterior distribution. We call solutions to the arg min problem q∗(θ)
a variational posterior. Increasing the complexity of the function class Q allows better approximations
of p(θ|x) but simultaneously increases the cost of a given optimization routine in solving for the
arg min.

A few steps of algebra reveal an important structural aspect of the optimization problem (Wingate
and Weber, 2013):

KL(q(θ)||p(θ|x)) = E
q

[log(q(θ))]− E
q

[log(p(θ|x)] (5.1)

= E
q

[log(q(θ))]− E
q

[
log

(
p(x|θ)p(θ)

p(x)

)]
(5.2)

= E
q

[log(q(θ))]− E
q

[log(p(x|θ)p(θ))]︸ ︷︷ ︸
−ELBO

+ log(p(x)) (5.3)

where ELBO stands for Evidence Lower BOund. This is a lower bound since from

KL(q(θ)||p(θ|x)) ≥ 0

we conclude that

ELBO ≤ log(p(x))

where log(p(x)) is the log-evidence of our model, as per standard terminology used in Bayesian
statistical methodology. Importantly, our optimization problem is independent of log(p(x)), and
therefore VI boils down to maximizing the ELBO.

Early methodological papers concerning VI focused on analytical methods to derive closed form
equations which can eventually be used in a coordinate ascent optimization routine to solve for the

165



variational posterior in a few special settings (Blei, Kucukelbir, and McAuliffe, 2017). These settings
tended to be restrictive with respect to both the underlying prior and likelihood model as well as the
function class Q. Moreover, even if applicable, the need for model-specific analytical derivations of
update equations made any application tedious (Ranganath, Gerrish, and Blei, 2013; Wingate and
Weber, 2013; Blei, Kucukelbir, and McAuliffe, 2017). Worse, the usual mean-field assumption on
posteriors (Murphy, 2012), which enables analytic computations in the first place, makes posterior
calibration unlikely due to mode-seeking behavior of the VI approach in general (Murphy, 2012).

What allows consideration of VI for purposes of approximate inference in this context (SSMs),
especially on top of a basis of arbitrarily defined approximate likelihoods (such as LANs), is the
following crucial insight (Wingate and Weber, 2013): Instead of using the ELBO to start a sequence
of analytical derivations leading to closed-form update equations, we ask only if we can take the
ELBO’s derivative with respect to the parameters w of the variational distribution qw(θ). We can
then perform stochastic gradient descent (Robbins and Monro, 1951). The following sequence of
algebra (adapted from Wingate and Weber, 2013) demonstrates the feasibility of this approach.
Considering the objective function L(w),

∇wL(w) =
[
∇w E

qw
[log(qw(θ))]− E

qw
[log(p(x|θ)p(θ))]

]
(5.4)

= ∇w E
qw

[
log

(
qw(θ)

p(x|θ)p(θ)

)]
(5.5)

=
∫
∇w

(
qw(θ) log

(
qw(θ))

p(x|θ)p(θ)

))
dθ (5.6)

=
∫
∇wqw(θ)

(
log

(
qw(θ)

p(x|θ)p(θ)

))
dθ +

∫
qw∇w log(qw(θ)) dθ (5.7)

=
∫
∇wqw(θ)

(
log

(
qw(θ)

p(x|θ)p(θ)

))
dθ + 0 (5.8)

=
∫

qw(θ) [∇w log(qw(θ))]
(

log
(

qw(θ)
p(x|θ)p(θ)

))
dθ (5.9)

≈ 1
N

N∑
i=1

[∇w log(qw(θi))]
(

log
(

qw(θi)
p(x|θi)p(θi)

))
(5.10)

since ∇wqw(θ) = qw(θ)∇w log(qw) and therefore,∫
qw∇w log(qw(θ)) dθ =

∫
∇wqw(θ) dθ = ∇w

∫
qw(θ) dθ = 0

We can now use the final right-hand side as an unbiased estimator of the ELBO’s gradient with
respect to variational parameters w (Wingate and Weber, 2013), which can then be used to drive
the optimization of the ELBO.

Note that this scheme imposes few restrictions on the form of p(x|θ) (we just need the log-
likelihood) or the function class Q (we need to be able to sample from a given qw(.), and log(qw)
needs to be differentiable). The optimization problems itself may still be difficult for complex Q, but
the algorithm remains widely applicable.
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Choosing the number N of particles (samples from the current variational distribution qwi(θ)) as
a hyperparameter, which we later fix to N ∈ {1, 10}, the numerical experiments are based on the
widely applied ADAM algorithm (Kingma and Ba, 2014) for stochastic gradient descent (Robbins
and Monro, 1951) on the ELBO objective. The associated learning rate parameter ∆, was set to 0.02
for experiments with the DDM, and varied between 0.02 and 0.0001 for the experiments involving the
ANGLE model. I discuss in section 5.2.5, which software packages were used for the implementation.

It is noteworthy that a variety of other optimization algorithms for VI have been proposed in
recent years (Neal et al., 2011). These vary the optimization criteria (Li and Turner, 2016) and/or
rely on different approaches to optimization (Liu and Wang, 2016). The numerical experiments serve
only as a starting point for studying the many possible stochastic VI frameworks for inference with
SSMs. Similarly, I explore only a small subset of the possible variational families (Rezende and
Mohamed, 2015).

5.2.4 Hamiltonian Monte Carlo

The second general paradigm for posterior inference is known as Markov Chain Monte Carlo (MCMC).
This approach, which has a longstanding history predating the inception of the VI framework by
decades (Metropolis et al., 1953; Hastings, 1970; Robert, Casella, and Casella, 1999; Diaconis, 2009),
relies on the generation of a sequence of auto-correlated samples (MCMC chain) from the posterior
distribution. When drawing a large number N of such samples, this sequence of auto-correlated
draws is then deemed converged and treated as a valid sample from the posterior distribution p(θ|x)
(Brooks et al., 2011). Various checks have been developed to safeguard against failures of convergence
(Geweke, 1992; Gelman and Rubin, 1992; Vehtari et al., 2021), so that practitioners are prevented
from deriving strong conclusion based on untrustworthy inference procedures. While none of these
methods are completely fool-proof, they are nevertheless successfully and widely applied.

In our previously published work Fengler, Govindarajan, et al., 2021a, appearing as chapter 3
in this thesis, we rely on MCMC for posterior sampling. Reported numerical experiments utilized
the HDDM python toolbox Wiecki, Sofer, and Frank, 2013, which in turn relies on the pymc2
probabilistic programming framework (Patil, Huard, and C. J. Fonnesbeck, 2010). MCMC in HDDM
is implemented via a coordinate-wise slice sampler Neal, 2003. While the slice-sampler via HDDM
was sufficient for a proof of concept, and allowed the conclusion that LANs are effective for posterior
sampling, a lot of room remains for testing more advanced samplers. For high-dimensional posteriors,
which are common in settings where hierarchical modeling is applied, a class of MCMC samplers
which utilize gradients (Rossky, Doll, and Friedman, 1978; Besag, 1994; M. D. Hoffman and Gelman,
2014; Neal et al., 2011; Betancourt and Girolami, 2015; Betancourt, 2017) of the posterior have
become the dominant workhorse behind a range of probabilistic programming frameworks (Carpenter,
Gelman, M. D. Hoffman, Lee, Goodrich, Betancourt, M. Brubaker, et al., 2017; Salvatier, Wiecki, and
C. Fonnesbeck, 2016b; Phan, Pradhan, and Jankowiak, 2019). Specifically the No-U-Turn Sampler
(or NUTS; (M. D. Hoffman and Gelman, 2014) can by now be considered the accepted standard
backbone of applied Bayesian statistics.
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While the theory of Hamiltonian Monte Carlo methods is involved (Betancourt, 2017), a summary
of the basic idea follows. I tailor this summary to our application of interest and strip any unnecessary
vocabulary (more comprehensive explanations of HMC can be found in Betancourt, 2017; Neal et al.,
2011; Gelman, Carlin, et al., 1995)

Instead of our posterior p(θ|x), we instead sample from another distribution, which we define as

Q(θ, ν; x) = 1
Z

exp (−H(θ, ν))

where H(θ, ν) = − log(p(θ|x) + νT M−1ν/2, and dim(θ) = dim(ν). This makes HMC an auxiliary
variable method (Besag and Green, 1993; Higdon, 1998; Gentle, Härdle, and Mori, 2012). Auxiliary
variable methods generally use extra dimensions of random variables to achieve better mixing of the
subset of random variables of interest in our target distribution (Green, 2003; Green and Hastie,
2009; Gentle, Härdle, and Mori, 2012). Note that the choice of H makes θ and ν independent in Q.
Hence sampling from Q and dropping the draws of ν, will provide us with a valid sample from p(θ|x).

The key idea of HMC is to use the gradients of H with respect to θ and ν to facilitate better
mixing of our MCMC algorithm than is possible with gradient-free schemes. Example of the latter
include relying on local perturbations in random directions, as in the Metropolis family of algorithms
(Metropolis et al., 1953), or coordinate-wise algorithms such as the slice-sampler (Neal, 2003)
implemented in HDDM (Wiecki, Sofer, and Frank, 2013). These latter methods cannot effectively
deal with strong correlations in the target distribution (e.g. parameter trade-offs in a posterior over
model parameters given data, p(θ|x)).

The algorithm follows a two-step process to produce MCMC samples. We first draw a sample
from

ν ∼ N (0, M)

and then propagate through (θ, ν) space, via the following dynamical system (the Hamiltonian
system):

dθ

dt
= ∂H

∂ν
(5.11)

dν

dt
= −∂H

∂θ
(5.12)

(5.13)

The propagation is usually done numerically, via the leap-frog algorithm (Neal et al., 2011). We
then accept or reject the proposed end-state (θ∗, ν∗) according to the following probability (this is
also called a Metropolis-step):

p(accept) = min[1, exp(−H(θ∗, ν∗) + H(θ, ν))] (5.14)
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Note that, this is just a standard Metropolis-step, where exp(−H(θ∗, ν∗) + H(θ, ν)) is essentially
the likelihood ratio. This leaves us with a few important tuning parameters for the algorithm. The
step size ϵ of the dynamical systems solver, the optimization of the covariance matrix M of the
Gaussian distribution over ν, and the number of steps of integration of the dynamical system. NUTS
(M. D. Hoffman and Gelman, 2014), introduces various schemes to automate the choice of these
tuning parameters, to which HMC schemes are rather sensitive (Neal et al., 2011).

The development of more and more advanced HMC samplers is an active area of research, and a
range of proposals are gaining traction (Betancourt, 2013; Betancourt, 2017; M. Hoffman, Sountsov,
et al., 2019; Girolami and Calderhead, 2011). However, as mentioned above, the No-U-Turn Sampler
is very widely applied (M. D. Hoffman and Gelman, 2014; Salvatier, Wiecki, and C. Fonnesbeck,
2016b; Carpenter, Gelman, M. D. Hoffman, Lee, Goodrich, Betancourt, M. A. Brubaker, et al., 2017;
Nishio and Arakawa, 2019; Gelman, Carlin, et al., 1995). It is in fact the go-to sampler that is
offered as a default in various probabilistic programming interfaces, such as STAN, PyMC, Pyro and
NumPyro (Carpenter, Gelman, M. D. Hoffman, Lee, Goodrich, Betancourt, M. Brubaker, et al., 2017;
Salvatier, Wiecki, and C. Fonnesbeck, 2016b; Bingham et al., 2019; Phan, Pradhan, and Jankowiak,
2019).

5.2.5 Software

For numerical experiments, I primarily use three python software libraries. First, as a benchmark
from previous work, I use the HDDM python toolbox (Wiecki, Sofer, and Frank, 2013) for Bayesian
inference with hierarchical DDMs, specifically its LAN extension (Fengler, Bera, et al., 2022). As
mentioned above, this toolbox uses coordinate-wise slice sampling. HDDM served as the substrate to
facilitate the numerical experiments reported in (Fengler, Govindarajan, et al., 2021b) as well as the
further developments which aimed at making LANs available to the research community at large
(Fengler, Bera, et al., 2022).

Second, for all experiments concerning VI,I use the Pyro software library (Bingham et al., 2019),
which is built on top of PyTorch (Paszke et al., 2019). Pyro is a probabilistic programming framework
with an explicit "VI-first" approach to inference. It has the largest variety of VI-algorithms available
out-of-the-box, is extensible to custom likelihood functions (crucial in our case), and remains well-
maintained and -documented. Third, for all experiments concerning HMC, I used the NumPyro
library (Phan, Pradhan, and Jankowiak, 2019), which is built atop of the JAX (Frostig, Johnson,
and Leary, 2018) library for differentiable programming. NumPyro is nearly analogous to Pyro in
design and user interface, but has strong support for HMC methods, with an extremely efficient
fully compiled NUTS serving as the main workhorse for MCMC. Both Pyro for VI and NumPyro for
HMC are therefore representative of the currently achievable inference runtimes concerning numerical
experiments such as the ones reported in this chapter.
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5.2.6 Details of Numerical Experiments

Computing Setup

We used the computing resources offered via the compute cluster at Brown University, submitting
the numerical experiments as sbatch jobs to the system. While the machines I accessed are all of
similar quality, there was some variation in hardware setups across parameter recovery runs. This
variation in hardware however was not systematic across inference algorithms.

For results reported as having run on CPU machines generally 4-cores and 8GB of RAM were
used. The allocated machines distributed as follows. The jobs were allocated to either Intel(R)
Xeon(R) Platinum 8268 CPUs clocked at 2.90GHz, Intel(R) Xeon(R) Gold 6126 CPUs clocked at
2.60Ghz or Intel(R) Xeon(R) Gold 6242 CPUs clocked at 2.80Ghz. The performance of these CPUs
is similar enough that the main reported runtime findings are not significantly affected by slight
differences in resource allocations. The reported differences in runtime trump any potential difference
(especially average difference) in computing resources allocated across the tested algorithms.

Results reported as having run on GPU machines equally requested 4 CPU cores and 8 GB of
RAM. CPU allocation for these machines varied quite widely. Nonetheless, the allocated GPUs are
the main determinants of computation costs in these instance. Utilized GPUs were NVIDIA TITAN
RTS, NVIDIA TITAN V, NVIDIA Quadro RTX 6000 and NVIDIA GeForce 3090.

Datasets

For each of the applied SSMs (DDM and ANGLE), I created two basic datasets from simulated data,
one for single subject parameter inference and one for parameter inference with hierarchical models.

Datasets were chosen so as to generate the largest possible variance in parameters, while avoiding
two defects:

First, I wish to avoid too many ground-truth model parameters hugging the bounds of the
permissible parameter space. This will lead to predictable defects in both the MCMC and VI
inference machines. The idea is to make sure that the posteriors themselves fall within the parameter
training bounds of the LANs used for the numerical experiments, so that the parameter search in VI,
as well as the sampling from the typical set (Betancourt, 2017; Cover and Thomas, 2006; MacKay,
Mac Kay, et al., 2003) of the posterior following MCMC is not corrupted by reaching those training
bounds where likelihood evaluations may become unreliable.

Second, I try to avoid ground truth parameters that lead to corresponding datasets with extremely
lopsided choice probabilities. In the extreme case, a dataset might only contain one kind of choice
(the other option was never chosen). Such datasets generally lead to problems with parameter
identifiability (on top of such problems that may result from utilizing complex generative models to
begin with). Parameter values close to the training bounds are generally responsible for such lopsided
datasets. Hence, in addition to the restriction of parameters to a contracted hypercube of parameters,
instead of sampling this hypercube uniformly, I apply a truncated Gaussian with standard deviation
defined as 1

6 of the allowed parameter range respectively for each of the model parameters θi.
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The logic applies to the parameter vectors used for both the Single Subject and the Hierarchical
datasets (where it refers to sampling of the group mean parameter).

Single Subject For the single subject dataset, I generated 300 parameter vectors (for each of the
DDM and ANGLE models) and simulated 500 trials of choice/reaction time for each. The parameter
vectors were constrained to lie within the training bounds of the respective LANs that were utilized.
The bounds were as follows. The lower bounds for the DDM parameters (v, a, z, t) were set to
(−2.5, 0.6, 0.3, 0.25), while the upper bounds were set to (2.5, 2.3, 0.7, 1.75). The lower bounds for the
ANGLE parameters (v, a, z, t, θ) were set to (−2.5, 0.6, 0.3, 0.25, 0.2), while the upper bounds were
set to (2.5, 2.3, 0.7, 1.75, 1.0).

Hierarchical For the hierarchical dataset I similarly generated 300 parameter vectors for each of
the DDM and ANGLE models. The structure of parameters was in accordance with the hierarchical
nature of the generative model. Subject parameters were drawn from a Gaussian Distribution, with
group mean parameter µg sampled from a truncated normal as per the Single Subject section above.
The standard deviation of the group distribution was chosen from a uniform distribution, where the
lower limit was chosen as 0.05 and the upper limit was chosen as a fraction (0.1) of the range implied
by LAN training bounds on the given parameter. All datasets were composed of 20 subjects for
which 500 trials each were simulated.

MCMC

We chose to run 2000 burn-in and 3000 actual draws, both for the MCMC runs utilizing a coordinate-
wise slice sampler (Neal, 2003) through HDDM (Wiecki, Sofer, and Frank, 2013; Fengler, Bera,
et al., 2022), and for the MCMC runs utilizing NUTS (M. D. Hoffman and Gelman, 2014) through
NumPyro (Phan, Pradhan, and Jankowiak, 2019). These numbers were chosen to make the runs
and ultimately the presentation more uniform. 5000 samples are almost certainly more than needed
for the single subject datasets, but may sometimes be too few for the hierarchical datasets (one
reason for convergence metrics potentially going awry). The group-level parameters are often much
harder to sample from (resulting in a lower effective number of samples). I generally used and
based convergence metrics on two chains (the minimal number, to curtail computational cost of the
numerical experiments). Uniform priors (group level priors) were applied for the single subject as
well as the hierarchical runs. I use the R̂ as our basic metric to judge convergence of MCMC chains.

The R-hat () statistic is defined as follows. For a given quantity ξ of interest (in our case ξ = θi,
one of the parameters of a SSM), a given number of chains m, and a number of MCMC samples
(potentially after throwing some number of initial samples out as a burn-in sample) n, we start with
the following two quantities, defined in direct analogy to the basic Analysis of Variance (ANOVA)
framework. First, the between-sequence sum of squares,
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B = n

m− 1

m∑
j=1

(ξ̄.j − ξ̄..)2 (5.15)

where, ξ̄.j = 1
n

∑n
i=1 ξij and ξ̄.. = 1

m

∑m
j=1 ξ̄.j . Second we define the within-sequence sum of squares,

W = 1
m

m∑
j=1

s2
j (5.16)

where, s2
j = 1

n−1
∑n

i=1(ξij − ξ̄.j).
In the context of MCMC we note that all chains are supposed to sample from exactly the same

distribution and therefore both B and V are estimators of the same quantity (the within-sequence
variance) and should converge in the limit of n→∞. However if the chains do not sample from the
stationary distribution (yet, since e.g. the number of MCMC samples is still to low or because of
other defects), then B will tend to overestimate this variance.

Now defining the statistic,

V ar+(ξ|x) = n− 1
n

W + 1
n

B (5.17)

which we can recognize as a weighted sum of W , the within chain variance estimator (unbiased) and B

the between chains variance estimator (overestimate). Therefore V ar+(ξ|x) is another overestimate
of overall chain variance. The (R̂) statistic is now defined as an inflation factor, between V ar+(ξ|x)
and W ,

R̂ =
√

V ar+(ξ|x
W

(5.18)

Commonly suggested (Gelman and Rubin, 1992; Gelman, Rubin, et al., 1992) is to accept chains for
which R̂ < 1.1.

VI

The underlying probability models used for VI runs were equivalent to the ones used for the MCMC
experiments, in which case they translate directly into the posterior shape. Two crucial choices need
to be made when performing VI, however, discussed separately below.

Choice of Variational Posteriors A central component of any VI approach is the shape of the
variational posterior. I used two types of distributions, Isotropic Multivariate Normal distributions
(IMVNs) serving as the simpler option. These are examples of the popular class of variational
posteriors known as mean field posteriors. Mean field approaches are characterized by the assumption
of independence of parameters in the posterior. In addition, I used Multivariate Normal Distributions
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(MVNs) with arbitrary covariances (adding more free parameters and allowing for linear dependencies
between parameters in posteriors). A broad range of possibilities exist for the construction of
variational posteriors and, as mentioned at the end of this chapter, the reported experiments should
be treated as only a starting point in this regard.

Optimizer Settings In concurrence with general stochastic gradient descent approaches, one
needs to choose settings for the optimizer of the ELBO objective. I chose the ADAM (Kingma and
Ba, 2014) algorithm, which is widely applied in the deep learning literature as default. I moreover
predetermined the number of optimizer steps to be 2000 across the board. I judged this to be a
reasonable stopping criterion, as it is unlikely an underestimation of the number of steps necessary
to reach an inescapable minimum. This evaluation was the result of initial pilot experiments. More
sophisticated stopping criteria could be applied. However, the initial focus is put on the proof of
concept, for which I a priori decided to avoid the otherwise useful philosophy of minimizing runtime.
The runtime results below make an attempt at providing realistic relative runtimes that approximate
the optimization behavior under reasonable stopping rules. Future experiments should explicitly
incorporate an investigation of stopping rules and their effect on the resulting runtimes as well as
how these choices may trade off computation with the quality of the variational posterior.

5.3 Results

5.3.1 Runtime

A major motivation for this work was to investigate the runtime behavior of NUTS and VI as they
compare to what can currently be achieved with the HDDM python toolbox (Wiecki, Sofer, and
Frank, 2013; Fengler, Bera, et al., 2022). In this section I present runtime-related results in two
chunks. First, I consider global runtime performance across all tested methods. Second, I consider
separately the VI and MCMC runtimes in slightly more detail, using respective appropriate metrics.

Global

As illustrated in Figure 5.2, some clear runtime patterns emerge across the tested algorithms. I
preface the discussion by mentioning that I consider an overly detailed focus on these numbers futile,
since they will partly be hardware-dependent. What matters more are the rough estimates of runtime
coefficients, particularly orders of magnitude changes. Nevertheless, I report certain numbers in
detail below, using this philosophy as a guideline as to which of these numbers to focus on.

For the single subject datasets consisting of 500 i.i.d trials each, I find that the total runtimes of
NUTS via NumPyro Phan, Pradhan, and Jankowiak, 2019 (31s and 42s respectively for CPU and
GPU) is roughly half of the runtimes I find for HDDM (87s and 69s respectively for CPU and GPU
backends). VI inference performs similarly. This is likely an overestimation, however, given that I
chose a predetermined number of optimizer steps. If instead an estimate of necessary optimizer steps
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is used (i.e., time to the empirical loss minimum), the VI runtimes would drop by 1/2 to 1/3 to
between 8s (VI-CPU - Normal ISO - 1 Particle) and 22s (VI - CPU - Normal ISO - 10 Particles).

For the hierarchical datasets, we can identify two broad patterns. First, the difference between
GPU and CPU runtimes are pronounced for both VI and NUTS. For VI, GPU batching allows the
10 particle versions of inference to run essentially at the same speed as 1 particle versions (66s vs.
57s for the Normal - ISO version and 35s vs. 46s for the Multivariate Normal version respectively),
allowing gradient stabilization at essentially no additional cost. With NUTS, in particular in contrast
to HDDM, speed on GPU is roughly 5 times faster than CPU for hierarchical datsets (1326s on
CPU vs 217s on the GPU), with the GPU version being roughly 8 times faster than the HDDM
CPU version (1722s vs. 217s on average respectively). Overall, ignoring possible improvements with
regards to optimization steps for VI, the VI algorithm ran roughly 30 times faster than the baseline
formed by HDDM on a GPU machine, and VI ran roughly 4 times faster than NUTS on the same
GPU machine.

A major contributor to the relatively slow speed of HDDM as compared to NUTS via NumPyro
(Phan, Pradhan, and Jankowiak, 2019) is the chunking of computations imposed by HDDM. Batch-
processing is impacted by the a priori decomposition of data into groups (e.g., by subject and/or
experimental condition). LANs are internally called separately for each such group, therefore inflating
the number of distinct forward passes on respectively small batch sizes for a given full sweep through
the parameter space. NumPyro (Phan, Pradhan, and Jankowiak, 2019) instead allows consideration
of all data in a single batch, which is then used for joint parameter updates, therefore tailoring the
computations much more closely to optimal utilization of GPUs.

These results hint at the significant impact that modern posterior inference algorithms can have
for the application of Bayesian inference to SSMs. A 30 fold speed increase will allow researchers to
fit in a day what currently may take a month, severely affecting the possibilities for exploration in
the modeling space.

Effective sample size

We can investigate some aspects of runtime in slightly more detail. As reported above, NUTS promises
roughly a halfing of inference time on single subject data as well as providing an 8-fold speed increase
for hierarchical data (point estimates based on the specific dataset settings). For MCMC methods,
however, it is not just the time to draw a number N of samples which matters. Across samplers
one may observe large discrepancies in mixing behavior (autocorrelation). Instead of reporting the
number of samples drawn from a sampler directly, it is therefore common to instead focus on the
number of effective samples embedded in a given number N of MCMC draws. The effective sample
size represents the equivalent number of independent samples from the target distribution embedded
in an autocorrelated MCMC sample. If a given algorithm is able to extract more effective samples
per draw, we can therefore opt to run shorter chains with equivalent performance. The effective
sample size is defined as
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Figure 5.2. Illustration of runtime distributions across datasets for the two type of data structures
considered. (Left) Single subject data of 500 trials each, and ( right ) hierarchical data which includes
20 subjects with 500 trials each. Two types of runtime metrics are reported, which are relevant for
the VI algorithms under consideration. Total Runtime (top), which refers to the VI runtimes for the
predetermined number of 2000 optimizer steps, and Runtime until SVI reaches min loss (bottom),
which calculates runtime for VI algorithms based on how many optimizer steps were needed to find
the actual minimum ELBO in the sequence of 2000 predetermined steps. Across the panels, four
broad types of algorithms are shown with different settings (hardware and/or hyperparameters).
HDDM refers to MCMC runs utilizing the HDDM python toolbox (Wiecki, Sofer, and Frank, 2013).
NUTS refers to MCMC runs utilizing the No-U-Turn Sampler (M. D. Hoffman and Gelman, 2014)
via the NumPyro python package (Phan, Pradhan, and Jankowiak, 2019), and VI via the Pyro
python package (Bingham et al., 2019). VI uses two respective variational distributions, a Normal
distribution with isotropic covariance structure (Normal-ISO) and a Normal distribution with full
covariance structure (Normal).
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Figure 5.3. Runtime comparison for the MCMC algorithms under consideration. The metric is
Effective Samples per Second. NUTS generally outperforms HDDM (and its slice sampler), with
increasing benefits for hierarchical data structures compared to the single subject case. NUTS via
NumPyro (Phan, Pradhan, and Jankowiak, 2019) can exploit batch-processing using the GPU across
the whole dataset, which leads to massive speedups for large/hierarchical datasets.

neff = mn

1 + 2
∑∞

t=1 ρt

where ρt refers to the autocorrelation with lag t of the given MCMC chain, m is the number of chains
used and n is the number of samples per chain (used, without any potential burn-in period). The ρt’s
are estimated from the chains with some estimator of choice, ρ̂t, and the infinite series is truncated
via some rule of thumb (e.g. the lowest t such that ρt + ρt+1 < 0), so that functionally one works
with,

n̂eff = mn

1 + 2
∑T

t=1 ρ̂t

for some T . Once we have the effective sample size we may then consider the a priori runtime and
compute the effective samples per second of the HDDM and NUTS algorithms. These numbers are
reported in Figure 5.3, where I find that the speed-up from HDDM to NUTS is roughly three-fold
for single subject and 20-fold for the hierarchical data.

5.3.2 Parameter Recovery

While informative, the runtime results reported above are critically dependent on a comparable
quality of posterior inference across methods. In this section I report the basic parameter recovery
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Figure 5.4. Illustration of runtime aspects for the VI algorithms under consideration. I show
respectively for the single subject (LEFT ) and hierarchical (RIGHT ) cases, how many steps of the
optimizer where necessary to reach the final reported ELBO minimum (the left of two subplots in
each case, with ELBO - min title) and the ELBO minimum plus one standard deviation (computed
from the tail of the loss trajectory, respectively the right of two subplots, with ELBI - min plus std
title). The 2000 optimizer steps were chosen naively a-priori for all numerical experiments. Roughly
1000 optimizer steps would have been sufficient to find the reported ELBO minimum. Moreover,
since most losses end in a long tail of minimal fluctuations, it is reasonable to not consider the ELBO
minumum, but instead a representative ’average’ for which I added 1 standard deviation of this tail
loss trajectory to the ELBO minimum. This benchmark was achieved in less than 500 optimizer steps
for the vast majority of cases, suggesting that the runtime for VI algorithms can be further reduced.

performance of the tested algorithms for a more detailed comparison.
Figures 5.5, 5.7 and 5.8 show that indeed, performance is very similar across all methods. For

the single subject data, the R2 values derived from regression recovery parameters on ground truths
parameters are essentially identical. For the group mean parameters in hierarchical datasets, reported
in 5.7 and 5.8 the same observation holds. I corroborate these findings by directly correlating the
results across methods as shown in Figure 5.6 (for single subject datasets), Figure 5.9 (for group means
in hierarchical datasets) and Figure 5.10 (for group standard deviations in hierarchical datasets). In
all cases correlations very close to 1 are obtained. While currently limited to numerical experiments
utilizing the basic DDM model, these results are encouraging as signs of the robustness of the VI
and NUTS algorithms.

5.3.3 Calibration

While parameter recovery is crucial and the results in the previous section encourage the use of
LANs for modern inference, evaluating the quality of posterior inference requires an additional step.
In particular one would like to know how accurate the methods are in recovering the full posterior
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Figure 5.5. Depiction of parameter recovery performance for the DDM model, across the four
general algorithms tested (HDDM, NUTS, VI via IMVNs, VI via MVNs). The R2 statistics from
a basic regression of ground truth on recovered parameters are reported for each parameter of the
model, respectively for each algorithmic approach. The dots are colored according to the choice
probability towards choice 1 in the underlying observed datasets. Yellow for choice probability 0 and
red for choice probability 1. Parameter recovery is extremely similar across all methods, with R2

values being nearly identical.

distribution, which is necessary for drawing conclusions about, e.g., whether a given parameter differs
between two experimental conditions.

To test an inference algorithm for this purpose, Talts et al., 2018 introduced simulation-based
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Figure 5.6. Another look at the similarities between the parameter recovery performance across
the four tested algorithms. The example shows their respective similar values for the a parameter of
the DDM. The performance on other parameters looks qualitatively identical. The heatmap (right)
shows that the correlation between methods is very close to 1 across the board. The pairwise plot
(left) similarly presents essentially unity lines of recovered parameter values across all methods (the
parameter values are extremely close to identical across the board).

calibration, yielding the corresponding rank-plots I report in Figures 5.13, 5.15 and 5.16. The idea
behind these rank plots is as follows. Under a consistent inference procedure, simulating data from
the assumed generative model and running the inference algorithm will produce a distribution of
p-values for ground truth parameters that is uniform in the respective posterior. The p-value is
here defined as P̂(θ|x)(θgroundtruth), the cumulative density of θgroundtruth under the approximate
posterior (derived either from HDDM, NUTS or VI). In the context of null-hypothesis significance
testing, this is know as the one-sided p-value.

Most violations of this neatly fit into four major interpretable categories (Talts et al., 2018),
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Figure 5.7. Depiction of parameter recovery performance for the DDM model, across the four
general algorithms tested (HDDM, NUTS, VI via IMVNs, VI via MVNs). The R2 statistics from
a basic regression of ground truth on recovered parameters are reported for each parameter of the
model, respectively for each algorithmic approach. Here I consider the hierarchical datasets, and
group level mean (µ, _mu_mu in the titles) parameters are reported. The dots are colored according
to the probability of choosing 1 in the underlying observed datasets. Yellow for choice probability 0
and red for choice probability 1. Parameter recovery is extremely similar across all methods, with
nearly identical R2 values.
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Figure 5.8. Depiction of parameter recovery performance for the DDM model, across the four
general algorithms tested (HDDM, NUTS, VI via IMVNs, VI via MVNs). The R2 statistics from
a basic regression of ground truth on recovered parameters are reported for each parameter of the
model, respectively for each algorithmic approach. Here I consider the hierarchical datasets, and
group-level standard deviation (σ, mu_std in the titles) parameters are reported. The dots are colored
according to the probability of choosing 1 in the underlying observed datasets. Yellow for choice
probability 0 and red for choice probability 1. Parameter recovery is extremely similar across all
methods, with R2 values nearly identical.

illustrated in Figure 5.12. The rank-plots deriving from the work conducted in this chapter can now
be assessed with with the aid of these failure mode patterns.
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Figure 5.9. Another look at the similarities between the parameter recovery performance across
the four tested algorithms, here for group mean parameters concerning hierarchical datasets. The
example shows the respective similar values for the a group mean parameter of the DDM. The
performance on other parameters looks qualitative identical. The heatmap (right) shows that the
correlation between methods is very close to 1 across the board. The pairwise plot (left) paints a
similar picture, presents essentially unity lines of recovered parameter values across all methods (the
parameter values are extremely close to identical across the board).

Beginning with the single subject datasets, we can observe two types of problems in Figure
5.13. First, a general tendency to underestimate the non-decision time across all methods (more
pronounced in the Variational - Normal ISO version). This tendency has been observed and pointed
out in other recent research (Boelts et al., 2022). This bias is extremely small (this is hard to deduce
from the rank plots, since these are not designed to show the actual size of a bias, only to show
that a bias may exist), since posterior uncertainty on the non-decision time tends to be minimal
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Figure 5.10. Another look at the similarities between the parameter recovery performance across
the four tested algorithms, here for group standard deviation parameters concerning hierarchical
datasets. The example shows the respective similarities for the a group standard deviation parameter
of the DDM. The performance on other parameters looks qualitative identical. Via the heatmap one
can observe (right) that the correlation between methods is very close to 1 across the board. Another
via is afforded by the pairwise plot (left) which presents essentially unity lines of recovered parameter
values across all methods (the parameter values are extremely close to identical across the board).

to begin with, and reflects a limitation in the current approach to training LANs, which can be
easily remedied. 1 This is accompanied by a concomitant (but much less pronounced) tendency to
overestimate the boundary separation parameter a (given that it is generally negatively correlated
with the non-decision time parameter in the posterior). Both the v and z parameters seem well
calibrated for the HDDM, NUTS and for VI with MVN variational distribution.

1LANs are built on top of kernel density estimates of reaction times, which allow a bleeding edge of positive density
for essentially negative RTs under a given non-decision time parameter. This is a solvable problem but outside the
scope of this work.
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Figure 5.11. Example of actual (pairwise) posteriors across a selection of tested algorithms. One
can see how the generated posteriors are nearly identical for HDDM (blue), NUTS (gray) and VI
with full covariance matrices (orange and red). In contrast to the single subject datasets, VI using
IMVNs performs essentially identically to the other algorithms, since at the group level one doesn’t
observe strong parameter correlations. Hypothesis testing based on posteriors from the IMVN-VI
algorithm will therefore tend to inflate the Type I error probability (percentage of falsely rejected
null hypotheses, or in other words wrongly detected effects).

The second observation is that the calibration of VI with IMVNs exhibits a tendency towards
overconfidence (upper right in Figure 5.12). Figure 5.14 makes it clear that this is a function of the
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mean-field assumption (Murphy, 2012) embedded in the IMVN variational distribution (assuming no
dependencies in the posterior). Figure 5.14 illustrates the observed sizable posterior covariances (e.g.
between the z and v parameters, and the z and t parameters). Mean-field VI (using IMVNs e.g.) will
underestimate the posterior variances while capturing posterior modes in this case, while VI using
MVNs allows capturing these variances and establish appropriate calibration. This phenomenon
confirms that simply checking parameter recovery performance is insufficient in establishing the
calibration of a Bayesian inference procedure. Posterior means may be perfectly estimated (as shown
with VI based on IMVNs), while much of the (potentially equally important) structure of the true
posterior is not modeled well.

Next I consider calibration performance for the hierarchical datasets. The rank-plots are split
across Figures 5.15 and 5.16 which separately consider the group mean and group standard deviation
parameters. The slight biases in non decision time t and boundary separation a are maintained as in
the single subject datasets. The same reasoning applies. Two novel patterns, however can also be
observed.

First, at the group level, VI using an IMVNs is well-calibrated, like HDDM, NUTS and VI using
the MVN variational family. Figure 5.11 illustrates why. There seem to be no significant posterior
correlations present at the group level and therefore choosing an IMVN variational distribution is
already sufficient for calibration.

Second, at the level of group standard deviations (illustrated in Figure 5.16) all algorithms seem
to perform very similarly and one (as one would expect) does not observe a bias specific to the
non-decision time and boundary separation parameters.

Overall, I conclude that NUTS and VI using MVN variational distributions are both at least as
well calibrated as HDDM. Therefore, given their superior runtime performance, both algorithms
should be preferred in newer versions of HDDM over slice samplers for inferring DDM paraemters
using LANs. All algorithms ultimately use LANs for likelihood evaluation and therefore inherit any
flaw of LANs, such as the slight miscalibration of the non-decision time and boundary separation
estimations. I emphasize again that this miscalibration is essentially negligible in terms of the actual
parameter shifts, and that there is little to no indication that the variance of the respective posteriors
is inaccurate. Hence, statistical tests concerning parameter comparisons across groups will not be
affected negatively. We, however, should strive to improve the LAN framework to eradicate the
remaining shortcomings.

5.3.4 ANGLE Model

Confirming that VI and NUTS are viable for inference in DDMs with LANs, I added numerical
experiments using the ANGLE model (as described above). For these experiments, I used single
subject datasets with 1000 trials, and hierarchical datasets with 100 subjects, 100 trials each.

We made the following general observations. First, as can be gleaned from our previous work
(Fengler, Govindarajan, et al., 2021b), posteriors for the ANGLE model include strong parameter
correlations, beyond even those observed for the DDM (illustrated in Figure 5.17. Hence, I focus the
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Figure 5.12. Failure modes of calibration as they appear in SBC rank plots. A uniform distribution
of p-values suggests good calibration (top). An inverse-U shape suggests under-confident posteriors,
i.e., posteriors that are too wide (upper left). A U shape suggests overconfident, or overly narrow,
posteriors (upper right). A positive slope suggests a tendency to underestimate a parameter (lower
left). A negative slope suggest a tendency to overestimate a parameter (lower right).

VI experiments on MVNs, dropping IMVNs since the IMVN family is trivially insufficient for the
estimation problem at hand.

For both NUTS and VI based on MVNs one can observe a number of parameter runs that go awry,
shooting specifically the boundary separation parameter a to the bounds of the allowed range. This
problem is exacerbated for hierarchical datasets with NUTS, where 50% of runs had to be thrown
out due to lack of convergence. Usually one of the two chains shoot to the boundaries, compromising
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Figure 5.13. Simulation-based calibration (Talts et al., 2018) plots by DDM parameter for single
subject datasets, split by the four inference algorithms under consideration. Note that HDDM, NUTS
and VI using MVN variational posteriors are generally well calibrated, apart from a slight bias in the
non decision time (it tends to be slightly underestimated) and an even smaller consequent bias in
the boundary parameter a. VI with IMVN posteriors shows worse calibration. As a result of overly
narrow posterior distributions, more p-values cluster at the extremes of 0 and 1.

the R̂ statistic (Gelman, Rubin, et al., 1992).
VI is shown to be somewhat more robust to this phenomenon, especially for hierarchical datasets.

However, note that estimation benefited form increasing the number of particles underlying gradient
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Figure 5.14. Example of actual (pairwise) posteriors across a selection of tested algorithms. The
generated posteriors are nearly identical for HDDM (blue), NUTS (gray) and VI with full covariance
matrices (orange and red). VI using IMVNs (essentially VI under the mean-field assumption with
marginal Normal distributions), suffers from mode-seeking behavior. Since covariances are ignored,
one finds a posterior which is correct in the mean estimate, but too narrow. Hypothesis testing based
on posteriors from the IMVN-VI algorithm will therefore tend to inflate the Type I error probability
(percentage of falsely rejected null hypotheses or wrongly detected effects).

computations (stabilizing the corresponding expected loss), which were increased from 10 to run
numerical experiments with 50 and 100 particles. Moreover, the learning rate hyperparameter of
ADAM (Kingma and Ba, 2014) did have an additional effect on the stability of the optimization
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Figure 5.15. Simulation-based calibration (Talts et al., 2018) plots by DDM parameter for single
subject datasets, split by the four inference algorithms under consideration. HDDM, NUTS and VI
with MVN posteriors are generally well calibrated, apart from a slight bias in the non-decision time
(it tends to be slightly underestimated) and a resulting even slighter bias in the boundary parameter a.
VI with IMVN posterior shows worse calibration. As a result of overly narrow posterior distributions,
more p-values cluster at the extremes of 0 and 1.

routines. I decreased it from 0.02, underlying the numerical experiments on the DDM model
to 0.001 for the numerical experiments involving the ANGLE model, significantly improving the
results. Running Pyro (Bingham et al., 2019) on a GPU machine, made the extra computational
burden concerning #-particles negligible to runtime concerns, since #-particles are subject to batch
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Figure 5.16. Simulation based calibration (Talts et al., 2018) plots by DDM parameter for
hierarchical datasets, split by the four inference algorithms under consideration. The HDDM, NUTS
and both VI approaches are generally well calibrated at the group standard deviation level, the bias
concerning non-decision times does not translate to a bias in the group standard deviation. There
seems to be a slight bias in the bias parameter z for HDDM and both VI algorithms, which does not
persist under NUTS. This may result from unintionally informative priors.

computation.
Figures 5.18 and 5.19 report parameter recovery results respectively for the single subject and

hierarchical datasets. Calibration for single subject data is included in Figure 5.18. For the hierarchical
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Figure 5.17. Example posterior from Bayesian parameter estimation with the ANGLE model.
MVN variational posteriors (Variational - Normal in the Figure, red), track both NUTS (gray) and
HDDM (blue) posterior shapes closely, successfully capturing extant posterior correlations. IMVN
variational posteriors, as opposed to the equivalent plot in Figure 5.14 for the DDM, are ignored here,
since the posterior correlations make IMVN application hopeless from the perspective of capturing
posterior uncertainty accurately.

datasets, calibration (Talts et al., 2018) is reported in Figure 5.20.
We can make some general observations. In general, the ANGLE model presents both the NUTS

and VI approaches with a number of complications as compared to the DDM. Higher parameter
correlations and potentially mutliple posterior models, affect convergence of NUTS (a large fraction
of runs, specifically for hierarchical data, had to be discarded) and are likely responsible for at
least some of the badly recovered parameters across both methods. Furthermore, the multivariate
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Figure 5.18. Parameter recovery and calibration plots for the ANGLE model using NUTS and VI
through MVNs (Variational - Normal in the Figure). NUTS as well as VI suffer from a few outliers
(top). Visual inspection of the calibration plots (bottom) suggests NUTS to be somewhat better
calibrated than VI with MVNs for the ANGLE model, while mean parameter recovery is slightly
superior using VI.

normal assumption, which led to nearly perfect calibration of VI under the DDM, seems to lead to
overconfident posteriors using VI for the ANGLE model.

While naive application of the settings chosen for the DDM model did not yield equivalently
successful results on the ANGLE model, much room for tractable improvement remains.

First, VI allows the setting of multiple hyperparameters which need investigation. The choice of
optimizer, as well as corresponding learning rate settings remains to be explored in more detail. The
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Figure 5.19. Parameter recovery for the ANGLE model using NUTS and VI (MVNs) on hierarchical
data wit 100 subjects and 100 trials each. Both VI and NUTS show a few outliers, NUTS reporting
a large fraction ( 50%) of failed runs. Estimation of group standard deviation (right, _mu_std in
the Figure) is less successful than estimation of group means (left, _mu_mu in the Figure), with
qualitatively consistent patterns across VI and NUTS. VI however is more successfull at estimation
of group standard deviation parameters overall.

basic VI algorithm may be exchanged (e.g.; (Liu and Wang, 2016)) and a vast array of alternative
variational families may still be explored to improve calibration.

Second, as a different layer of hyperparameters, setting slightly informative priors may help
regularize both VI and NUTS to escape unfavorable posterior modes. Relatedly, one can include
posterior annealing (Geyer and Thompson, 1995) into the warm-up phase for NUTS, to further help
avoid the sampler being drawn into inescapable corner regions of the parameter space early on.
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Figure 5.20. The plot shows the calibration performance (Talts et al., 2018) of NUTS and VI on
the ANGLE model for hierarchical datasets of 100 subjects, 100 trials each. While calibration as
reported here suggests NUTS to be superior, note that the results reflect only NUTS runs which
resulted in R̂ < 1.01. Indeed 50% of NUTS runs needed to be deleted for insufficient convergence as
per this metric.

Third, (equivalent) reformulations of the generative model via e.g. non-centered parameterizations
(Bernardo et al., 2003; Papaspiliopoulos, Roberts, and Sköld, 2007), may additionally help convergence
issues of NUTS.

Lastly, the LAN framework is subject to potential for improvement itself. E.g. to help NUTS one
avenue is to investigate and improve the regularity of LAN-gradients.
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5.4 Discussion

The goal of this chapter was to provide a proof of concept for the usefulness of LANs in conjunction
with modern algorithms for (approximate) Bayesian Inference. The landscape of such algorithms
is vast (Robert, Casella, and Casella, 1999; Gentle, Härdle, and Mori, 2012; Brooks et al., 2011)
and ever expanding (Ter Braak, 2006b; Girolami and Calderhead, 2011; Betancourt and Girolami,
2015; M. Hoffman, Sountsov, et al., 2019; Lao et al., 2020; Lu et al., 2019; M. Hoffman, Radul, and
Sountsov, 2021). However, three basic kinds of algorithms can be identified as the main workhorses
of applied Bayesian statistics. First are MCMC algorithms which do not make use of likelihood
gradients. These numerous algorithms include the traditional Metropolis Random Walk sampler
(Metropolis et al., 1953), the Gibbs sampler, (S. Geman and D. Geman, 1984) various combinations
thereof, and a large variety of competitors (Ter Braak, 2006b; Haario et al., 2006; Robert, Elvira,
et al., 2018). Amongst this array of gradient-free samplers we find the famously robust slice sampler
(Neal, 2003), which forms the backbone for posterior sampling in the HDDM software package, the
latter serving as the basic comparison benchmark in this work. Second, the workhorse of modern
software for Bayesian statistics (Carpenter, Gelman, M. D. Hoffman, Lee, Goodrich, Betancourt,
M. A. Brubaker, et al., 2017; Salvatier, Wiecki, and C. Fonnesbeck, 2016a; Phan, Pradhan, and
Jankowiak, 2019; Bingham et al., 2019) is the set of gradient-based MCMC samplers. Important
examples are samplers based on Langevin dynamics (Rossky, Doll, and Friedman, 1978; Besag and
Green, 1993; Mou et al., 2021; Girolami and Calderhead, 2011) and those derived from Hamiltonian
systems (Neal et al., 2011; Betancourt and Girolami, 2015; Betancourt, 2017) (see the methods
section). For the purposes of this work, I chose NUTS from this class, as implemented by the
NumPyro (Phan, Pradhan, and Jankowiak, 2019) python software package, because it forms the
backbone of other widely-applied modern inference libraries (Carpenter, Gelman, M. D. Hoffman,
Lee, Goodrich, Betancourt, M. A. Brubaker, et al., 2017; Salvatier, Wiecki, and C. Fonnesbeck,
2016a; Phan, Pradhan, and Jankowiak, 2019; Bingham et al., 2019). VI algorithms make up the
third branch of modern inference algorithms (Wainwright, Jordan, et al., 2008; Blei, Kucukelbir,
and McAuliffe, 2017), representing an optimization-based route towards inference. I used Stochastic
Variational Inference (M. D. Hoffman, Blei, et al., 2013; Ranganath, Gerrish, and Blei, 2013; Wingate
and Weber, 2013) via the dedicated Pyro (Bingham et al., 2019) python package. VI promises orders
of magnitude improvements in inference time over the other classes if applied in the right setting.

LANs are trained to provide good approximations of the trial by trial log-likelihoods for a given
SSM and by construction (as Neural Networks) will be differentiable with respect to the input
parameters (therefore parameters of the generative model/SSM). But moving from the slice sampler
(Neal, 2003) implemented in HDDM Wiecki, Sofer, and Frank, 2013 towards NUTS when basing
inference on LANs is not a trivial step. The training loss is independent of the accuracy of those
gradients, which may be arbitrarily unstable. NUTS crucially depends on good behavior of these
gradients to pass through the implicitly defined Hamiltonian dynamics upon which proposed sampler
draws rely. I was therefore skeptical, but cautiously optimistic as to the promise of NUTS for
approximate inference using LANs.
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The proof of concept reported in the previous sections, using the DDM as an initial test-bed,
exceeded my expectations about the potential of the LAN framework for use in modern gradient-based
MCMC methods (and therefore being embedded within modern statistical computing ecosystems). I
found that NUTS is as well-calibrated as HDDM, for both simple (single subject) and more complex
datasets/generative models (hierarchical), although inheriting slight parameter estimation biases
which I believe derive from improvable properties of LANs. Moreover, I provide clear evidence, as
illustrated, e.g., in Figure 5.2, that NUTS can lead to massive computing speed improvements at the
same time. I thus conclude from these initial findings that further work in this direction is warranted.
This may include larger scale numerical experiments as well as further improvements to LANs and
similar likelihood approximators (Papamakarios, Sterratt, and Murray, 2019a; Boelts et al., 2022).

Switching from MCMC approaches to VI imposes a different set of trade-offs. The stochastic VI
algorithm utilized in the numerical experiments (Wingate and Weber, 2013), like the slice sampler in
HDDM (Wiecki, Sofer, and Frank, 2013), demands only that the likelihood can be evaluated. Gradient
computations are restricted to the parameters of the variational distributions. The complexity of the
class of variational distributions, however, is an important hyperparameter. Complex variational
distributions will enable better approximations of a given target distribution, while increasing the
instability and computational costs of the optimization process. The experiments explored only a small
sliver of the vast search space of possible configurations but nonetheless served two aims. First, they
provide a proof of concept that Variational Inference is feasible within the context of approximated
likelihoods via LANs. Second, they provide initial evidence regarding the accuracy/speed trade-off
across different classes of variational distributions. To illustrate the accuracy/speed trade-off I used
two types of variational distributions: IMVNs and MVNs (as described earlier).

Our results show clearly that VI is not only feasible in the context of LANs, but a highly successful
method when used within the primary test-bed, the DDM (Ratcliff, 1978; Ratcliff et al., 2016). But
I concluded that the mean-field approximation implicit in the IMVN variational distributions is
inadequate for subject-wise parameter estimation, a predictable finding given the clear parameter
correlations in the posterior exposed via the MCMC methods. IMVN posteriors successfully find the
mode of the posterior distribution (and hence provide excellent parameter recovery performance as
illustrated in Figures 5.5, 5.7, 5.5), but result in ill-calibrated inference due to their underestimation
of posterior uncertainty (see Figure 5.13). On the other hand, I can conclude that MVN posteriors
are a good approximation to true posteriors for the DDM and in turn lead to well calibrated inference,
offering a performance identical to NUTS and HDDM, as reported in 5.13. I moreover did not observe
significant differences in speed of convergence and runtime across both of the tested variational
distributions and therefore judge MVNs to be the variational distribution of choice for this type of
inference. The fact that VI was shown to be competitive with MCMC in the quality of the posterior
approximation is important, not only because it provides an alternative route to posterior inference,
but because it also offers two extra benefits. First, stochastic VI does not rely on likelihood gradients
and therefore is expected to be slightly more robust than NUTS in the context of LANs (which
in their current form do not include any type of gradient regularization and therefore no explicit
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guarantees of gradient stability). Second, on top of the heavily optimized implementation of NUTS
available in NumPyro (Phan, Pradhan, and Jankowiak, 2019), 4 to 5 fold speed improvements with
VI can be reported (see the results section, e.g., Figure 5.2).

Our numerical experiments based on the ANGLE model were somewhat less successful however.
Two main problems await resolution. First, the NUTS sampler turned out to be significantly more
brittle when estimating hierarchical models from respective datasets. Second, VI using MVNs, shown
sufficient for calibration in the DDM model, seemed insufficient for good calibration when applied in
the context of hierarchical ANGLE model estimation (see Figures 5.20, 5.19 and 5.18). As described
earlier, I however believe that these problems are addressable and I listed several routes for such
investigations which are relayed to future work. My optimism regarding NUTS and VI for LAN-based
SBI hence remains unaffected.

Overall, this work provides a promising starting point for the integration of LANs with modern
probabilistic programming ecosystems. I showed that NUTS is viable with LAN-based likelihoods,
therefore demonstrating that LANs provide not only a good first order approximation to log-
likelihoods, but also stable enough gradients for reliable MCMC inference. I moreover showed that
stochastic VI can also be performed using LANs. Importantly, I demonstrated how both methods
can result in massive speed gains compared to the current HDDM interface for LANs.

5.5 Limitations and Directions for Future Research

The basic goal of this chapter was to advance towards a solid foundation for the development of a
larger software toolbox which, backed by modern inference algorithms, provides a flexible framework
for conducting Bayesian inference across simulator models. Since LANs (Fengler, Govindarajan, et al.,
2021b), and competing methods for likelihood approximation (Boelts et al., 2022; Papamakarios,
Sterratt, and Murray, 2019b) do not provide direct guarantees for the quality of likelihood approxima-
tions and the stability of their gradients, extensive numerical experiments are necessary to produce a
set of building blocks that users can ultimately rely on.

While the numerical experiments strongly suggest that LANs can successfully serve as likelihood
approximators for MCMC-based inference with NUTS, as well as basic approaches to stochastic
Variational Inference, nevertheless certain limitations remain. I will focus on a few of these weaknesses
below.

First, to confirm the runtime benchmarks and fully understand the relative speed of VI compared
to MCMC, one should adopt a wider range of stopping metrics (Prechelt, 1998) for the VI algorithms.
An attempt was made to provide adjusted runtimes for VI, taking into account the number of steps
it took to come close to the eventual reported ELBO after a fixed 2000 steps (a number deemed
sufficient for convergence after investigating some initial pilot runs). However, a wide range of choice
for early stopping metrics are available in the machine learning literature. Building on this work, one
should dedicate some experiments to the investigation of stopping rule choices and their effect on the
performance of the resulting Variational Inference algorithms.
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Second, in this chapter I chose to limit the VI numerical experiments to two numbers of particles: 1
and 10. The number of particles has an effect on the stability of the loss landscape across optimization
steps, with higher number of particles, at the potential cost of step-wise runtime, leading to better
estimation of the ELBO and resulting gradients, therefore ultimately to a more robust optimization
routine. This trade-off warrants more detailed investigation. Moreover, room for code optimization
likely remains, since contrary to a priori expectations, the step-wise runtime increased linearly with
the number of particles in the numerical experiments. This may hint at sub-optimal batching of the
computations. The fundamental trade-off between the number of particles and the number of steps
necessary for robust VI remains a valid target for research, regardless of whether the code used for
this work may not have optimally utilized computing resources.

Third, the present application of NUTS, especially to the case of hierarchical models, led to a few
mishaps, including a large number of divergences and a fraction of cases which failed to converge
according to the Gelman-Rubin R̂ statistic (Gelman and Rubin, 1992). While on average we can
consider the application of NUTS to be a success, further investigations concerning the stability of
NUTS in the hierarchical case will be beneficial. Such investigations may involve re-parameterizations
(Gelman, 2004; Gelman, Van Dyk, et al., 2008; Betancourt and Girolami, 2015; Bernardo et al., 2003;
Papaspiliopoulos, Roberts, and Sköld, 2007), scrutinizing the effects of the warm-up routines of the
samplers, settings for initial parameters and robustness to a variety of prior choices and dataset
structures (instead of only examining 20 subjects with 500 trials for each).

Fourth, as a VI analogue to point three, a larger variety of VI algorithms and associated dataset
structures should be tested. Does VI tend to break down if the parameter space gets inflated (e.g., as
a result of including more subjects in the context of hierarchical modeling)? Are there performance
trade-offs across VI approaches (Kucukelbir, Ranganath, et al., 2015; Kucukelbir, Tran, et al., 2017;
Liu and Wang, 2016)?

Fifth, further benchmarks will be necessary to achieve the vision of general-purpose software.
Probabilistic programming backends in this chapter are limited to Pyro (Bingham et al., 2019)
for VI, NumPyro (Phan, Pradhan, and Jankowiak, 2019) for MCMC, and HDDM (Wiecki, Sofer,
and Frank, 2013) as a basic reference. Two candidates to broaden the benchmark suite should
be included in future work: the STAN library for probabilistic programming (Carpenter, Gelman,
M. D. Hoffman, Lee, Goodrich, Betancourt, M. Brubaker, et al., 2017) and PyMC (Patil, Huard, and
C. J. Fonnesbeck, 2010), both of which are staples of probablistic programming. Moreover, a wider
range of likelihood approximators should be evaluated for their relative benefits and shortcomings. In
addition to LANs (Fengler, Govindarajan, et al., 2021b), one should consider MNLEs (Boelts et al.,
2022) and SNLEs (Papamakarios, Sterratt, and Murray, 2019a) as well as likelihood approximations
based on Gaussian Processes (Acerbi, 2020).

The future work summarized in the preceding paragraphs will form a solid foundation from which
one can derive broad guidelines for the application of Simulation Based Inference algorithms in
computational cognitive and neuroscience. Equally, these efforts should support better choices in the
development of software toolboxes designed to aid the research community with parameter inference.
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Incorporating novel computational models will ultimately help apply the right tools to the right
problems.
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Simulation Based Inference is quickly progressing from the hidden realms of specialist niche
methodologies to being part of the repertoire in computationally minded experimental laboratories
across cognitive science and neuroscience (but also other disciplines; Wood, 2010; Alsing et al.,
2019; Cole et al., 2022). The great promise of these SBI methods is to bridge the distance between
experts in computational methods and experimentalists interested in computational methods who
lack specific expertise in mathematical statistics and related fields.

Historically, stochastic mechanistic models of brain and behavior have their beginnings as
simulators that can serve as data generators (or forward models), and which may be rigorously
defined in mathematical terms. However, the derivation of easy-to-compute analytical likelihood
functions, if a tractable problem at all, can lag years (sometimes decades) behind the availability of
such simulators, in part because the mathematical expertise needed for such derivations is distinct
from the expertise necessary to propose new models or slight variations of existing ones. The
implication is that experimentalists are impeded from advancing and testing novel models unless
they have access to experts in mathematical statistics.

The DDM serves as a good example. Introduced as a cognitive process model by (Ratcliff, 1978;
Ratcliff et al., 2016), it was not until the late 2000s when (Navarro and Fuss, 2009) developed a fast
algorithm to compute semi-analytical likelihoods via intelligent series truncation. This is despite
the fact that the infinite series representation of the so-called first passage distributions of a Wiener
process was known at least since W. and V., 1968). Only after Navarro’s work did software packages
like HDDM become possible: These cheaper-to-compute likelihoods rendered hierarchical Bayesian
inference tractable.

Modern SBI methods (Gutmann, Dutta, et al., 2018; Gutmann and Corander, 2016; Alsing
et al., 2019; Lueckmann, Goncalves, et al., 2017; Lueckmann, Bassetto, et al., 2019; Greenberg,
Nonnenmacher, and Macke, 2019; Boelts et al., 2022; Fengler, Govindarajan, et al., 2021; Papamakar-
ios and Murray, 2016; Papamakarios, Nalisnick, et al., 2019; Papamakarios, Sterratt, and Murray,
2019a; Durkan, Murray, and Papamakarios, 2020; Durkan, Bekasov, et al., 2019; Radev et al., 2020)
have brought sophisticated statistical machinery to generative models which, as described above,
previously only afforded access to rudimentary statistical approaches. Emerging software toolboxes
(Tejero-Cantero et al., 2020; Fengler, Bera, et al., 2022) substantially reduce the entry barriers for
usage. Hence, researchers may now perform computationally tractable statistical inference for a
broad array of models without requiring laborious effort from mathematical experts. While analytical
derivations may further improve the speed of inference and remain an important avenue for research
in the computational modeling sphere, Simulation Based Inference promises to grant modelers and
experimentalists a much greater degree of statistical autonomy at the moment of model conception.
The mathematician may still improve computational work via analytical approaches, but no strict
dependency between bayesian inference and such analytical leg-work remains.

A significant increase in research activity concerning SBI methods is currently underway. Indeed,
as this thesis was being written, new alternative approaches emerged (Boelts et al., 2022; Acerbi,
2020; Brehmer et al., 2020; Radev et al., 2020; Cole et al., 2022; Thomas et al., 2022). However,
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while the current zeitgeist slowly starts to question the continued validity of Moore’s Law, the no free
lunch theorem (Wolpert, 1996), unperturbed, applies again. No single approach to SBI dominates all
others for every application. Researchers still need to investigate the full space of available methods
in order to fruitfully optimize their models.

To help navigate this maze of candidate algorithms, chapter 2 provided a history of SBI methods,
tailored towards a detailed differentiation of paradigms and corresponding recent Neural Network-
based approaches.

I distinguished between three overarching collections of methods, which were developed somewhat
sequentially. From the initial ABC algorithms based on rejection sampling and their descendents
(LFI-ABC) (Tavaré et al., 1997; Pritchard et al., 1999; M. A. Beaumont, Zhang, and Balding, 2002;
M. A. Beaumont, 2010; Sisson, Fan, and M. Beaumont, 2018), to the application of more traditional
machine learning paradigms such as Gaussian Processes and Logistic Regression (LFI-ML) (Acerbi,
2020; Sisson, Fan, and M. Beaumont, 2018), towards the plethora of recent methods which fully
embrace a Neural Network-based learning approach to SBI (LFI-NN) (Papamakarios and Murray,
2016; Papamakarios, Pavlakou, and Murray, 2017; Papamakarios, Sterratt, and Murray, 2019a;
Lueckmann, Bassetto, et al., 2019; Greenberg, Nonnenmacher, and Macke, 2019; Radev et al., 2020;
Fengler, Govindarajan, et al., 2021; Boelts et al., 2022). I then discussed the main classification of
these algorithms along two axes. First, which aspect of inference does the Neural Network target (
likelihood functions or posteriors, local or global) and second, which class of learning problem and
associated architecture is used (e.g., density estimators like flows, ratio estimators or is the setup a
basic regression?). I put in focus the relationship between these algorithms, strengths and weaknesses
and potential applications tailored towards cognitive process models.

Emphasis was placed on the relative strengths and weaknesses of posterior- versus likelihood-
targeting algorithms. Algorithms that target the posterior directly (Greenberg, Nonnenmacher,
and Macke, 2019; Papamakarios and Murray, 2016; Papamakarios, Sterratt, and Murray, 2019b;
Radev et al., 2020) can provide instant posterior sampling on new data, but are specialized to single
inference scenario. Global amortization of posteriors is useful to investigate structural parameter
trade-offs in mechanistic models, and for data analysis in simple experimental setups or models with
few parameters (e.g., parameter inference for single subject data, potentially with a few conditions).
Networks, however, need to be retrained when any assumption in the model is changed (for instance,
allowing parameter θ1 to vary across experimental conditions but not parameter θ−1), requiring the
initial amortization costs again. No obvious application of transfer learning may ameliorate those
retraining costs either. This is because the resulting networks across inference scenarios usually
define distributions over output space of different dimensions for which network architectures cannot
be directly recycled. Hence, while extremely effective in the domain to which they are tailored,
the application of posterior-targeting methods to complex empirical data, e.g., from laboratory
experiments in psychology or the cognitive sciences, is hampered severely.

In contrast, likelihood-targeting methods (Lueckmann, Bassetto, et al., 2019; Papamakarios,
Sterratt, and Murray, 2019a; Fengler, Govindarajan, et al., 2021; Boelts et al., 2022) do not afford
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instant posterior inference but provide us with encapsulated approximate likelihoods which can
either work on summary statistics of data-sets (Lueckmann, Bassetto, et al., 2019; Papamakarios,
Sterratt, and Murray, 2019a) or in the last consequence be defined trial-wise (Fengler, Govindarajan,
et al., 2021; Boelts et al., 2022). Once given access to trial-wise likelihoods, these can a posteriori
be reused for any inference scenario, including arbitrary numbers of subjects, trials, and theoretical
assumptions on the structure of parameters like hierarchies. I highlight how this approach is key for
widespread reuse of computational models amortized once throughout a research community, even if
the original training is costly. Hence, likelihood targeting SBI methods decouple the considerations
of experimental design from the SBI algorithm itself, a major barrier for efficient reuse across
laboratories, datasets and experiments.

Motivated by the potential of likelihood-targeting approaches, my own contribution to this
collection of algorithms is described in chapter 3 (Fengler, Govindarajan, et al., 2021). chapter 3
describes Likelihood Approximation Networks (LANs), which formulate the task of learning log-
likelihoods as a regression problem and successfully apply simple Multi-Layered Perceptrons (MLPs)
as well as Convolutional Neural Networks (CNNs) for speedy inference in data analysis problems.
Applications to Sequential Sampling Models (SSMs) are highlighted and I showed, especially on
GPU hardware, the speed of inference for simple DDMs is comparable to the fastest semi-analytical
approaches that are based on truncated series (Navarro and Fuss, 2009; Foster and Singmann, 2021;
W. and V., 1968).

LANs can therefore be used to test empirical data (old and new) against a much larger variety of
cognitive process models, where access to approximate likelihoods naturally facilitates the computation
of common model comparison metrics such as the DIC (Spiegelhalter et al., 2014) or WAIC (Watanabe,
2013). I contend that this helps facilitate the scientific process, which in the computational sciences
can be characterized as an evolutionary path through candidate models, with model comparison
metrics and statistical methods defining the governing evolutionary principles. LANs therefore serve
as a stepping stone towards freeing experimentalist’s modeling choices from the dictates of analytical
convenience. The latter is epitomized by the ubiquitous application of the basic DDM, despite
the exitence of equally (if not more) applicable, but likelihood-free, versions of sequential sampling
models.

Working towards the realization of this promise, at first in the domain of sequential sampling
models, chapter 4 discussed an extension to the HDDM python software package (Wiecki, Sofer, and
Frank, 2013; Fengler, Bera, et al., 2022). The basic version of HDDM facilitates parameter estimation
for a flexible class of hierarchical Bayesian models based on DDM likelihoods. The HDDM-LAN
extensions, now an integral part of the HDDM package, provides access to LANs for a bank of
SSMs, therefore allowing users with basic familiarity of HDDM to utilize a much larger selection of
likelihood models. Since LANs provide trial-wise likelihoods, any trial-wise process driving model
parameters, such as a reinforcement learning agent operating across trials, can be incorporated. As
explained in chapter 4, I included a basic set of reinforcement learning algorithms that allows the
specification of a variety of RL-SSM models (precedence for the use of this label, albeit without a SBI
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connotation, can be found in another recent software package of the same name; Fontanesi, 2022).It’s
name notwithstanding, the HDDM-LAN extension is conceptualized a priori to not commit solely
to LANs as the underlying likelihood approximator, but rather to enable the use of any likelihood
approximator and allow inference for user-defined custom models. The spirit here is to provide with
HDDM a convenient scaffolding for complex Bayesian hierarchical models, while increasing the user’s
flexibility at the level of likelihood functions.

LANs allow fast inference: three orders of magnitude faster than methods demanding simulations
during inference (Turner and Sederberg, 2014; Turner and Van Zandt, 2012; Turner and Van Zandt,
2018) and one order of magnitude faster than even directly comparable recent flow-based likelihood
approximators (Boelts et al., 2022). Nonetheless, inference for large, complex data-sets can still
require hours and sometimes days.

In chapter chapter 5 I showcase two avenues towards improving this situation. First, I make use
of LAN gradients with respect to their inputs (model parameters), available by construction. The
tests in chapter 3 were based on slice sampling (Neal, 2003), the underlying MCMC algorithm of
the HDDM package, which does not take advantage of likelihood gradients and instead only relies
on repeated likelihood evaluations. While it was by no means guaranteed that the gradients of
LANs would be stable enough to support modern gradient-based MCMC methods such as the NUTS
algorithm (Hoffman and Gelman, 2014), I provide a proof of concept regarding the feasibility of this
application and showcase the potential for significant inference speed gains. Specifically for complex
datasets that demand hierarchical modeling, I observe an order of magnitude (or more) increase in
the number of effective samples per second (Gentle, Härdle, and Mori, 2012).

As a second avenue of exploration I considered Variational Inference on the basis of LANs (Blei,
Kucukelbir, and McAuliffe, 2017; Ranganath, Gerrish, and Blei, 2013; Wingate and Weber, 2013), for
which again, the work in chapter 5 constitutes a proof of concept. Variational Inference adds another
layer of approximation to inference, since the method treats posterior inference as an optimization
problem on an a-priori parameterized distribution. Nonetheless, the observed speed improvements,
using the DDM model as an initial test-bed, suggest that the method can be useful in practice. The
approach tends to outperform even NUTS by roughly 5 times, consequently outpacing inference with
HDDM at least 50 fold on hierarchical inference problems. I moreover found that the multivariate
Normal variational family is sufficient to generate well-calibrated (Talts et al., 2018) posteriors (see
chapter 5).

I hope that the work presented in this thesis will serve as a stepping stone towards better SBI
methods, ones that even are faster, more elegant and more data efficient. Recent advances inspired
by LANs already point in this direction (Boelts et al., 2022), and I plan to continue my research
based on the foundation laid by LANs. I consider multiple pathways for future research worth
exploring, marked also in the respective sections within chapter 2, chapter 3, chapter 4 and chapter 5.
First, a direct improvement to LANs themselves. Small tweaks to the definition of the empirical
likelihoods (KDEs) may allow us to overcome the slight estimation biases of LANs with regards to
the non-decision time and boundary parameters, pointed out in subsequent research advances (Boelts
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et al., 2022). Moreover, a fusion between elegant flow-based likelihood approximators and MLPs
may prove fruitful. Flows tend to be slower than MLPs for likelihood evaluation but allow training
directly on simulator output without a detour via empirical likelihood construction. They moreover
enable fast sampling from an implicitly-trained surrogate simulator. One may first train a flow, then
distill log-likelihood evaluations into an MLP to harmonize the LAN and MNLE paradigms and end
with the best of both worlds via synthesis. Similarly, it may be fruitful to distill pre-trained LANs
themselves into minimal architectures that maintain approximation performance, thereby maximizing
inference speed even further.

My experiments with modern samplers and Variational Inference also encouraged the development
of a new HDDM, with HSSM as a working title, modernizing the basic infrastructure of HDDM
towards newer probabilistic programming backends. This will improve sampling performance and
tighten the integration of likelihood-targeting SBI methods with modern workflows for Bayesian
statistical analysis (Gelman et al., 2020).

I moreover see great potential in the development of infrastructure which can allow researchers to
create and share their own likelihood approximators as well as integrate them into toolboxes that
facilitate inference on empirically relevant data. The HDDM extension described in chapter 4 is a
first step in this direction and allows users to access a common bank of models enabled by pretrained
LANs as well as utilize novel likelihood functions via a custom models interface (as explained in
chapter 4.

However, more formal modes of sharing likelihood approximators will be helpful in normalizing such
workflows. Partially facilitating this, my current work strives to develop user-friendly pipelines for the
training of LANs to help users fully bridge the gap between access to simulators and statistical inference.
The initial work can be found under https://github.com/AlexanderFengler/LANfactory. The
existence of some such pipelines (Radev et al., 2020; Tejero-Cantero et al., 2020), with emphasis on
posterior-targeting SBI algorithms have already had a significant impact on adoption of said methods
and I firmly believe that, specifically in the cognitive and behavioral sciences, similar if not more
success in this regard is possible with likelihood-targeting methods.

Lastly, while SSMs have been the focal point of applications in this thesis, the presented methods
can be applied far more generally, signified not least by the plethora of disciplines with interest in SBI
(Turner and Van Zandt, 2012; Wood, 2010; Cranmer, Brehmer, and Louppe, 2020; Papamakarios,
Nalisnick, et al., 2019; Alsing et al., 2019). I hope to explore a wider scope of applications in the
future.
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